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Section 1

SU4MARY

Lockeed Missiles and Space Company has conducted a study for the

National Aeronautics and Space Administration, Ames Research Center, to

assess the applicability of using a star field scanner to determine the

spin axis orientation of the spinning Pioneer Venus Spacecraft. A survey

was conducted to determine the methods and techniques currently employed

in star scanner systems, including various slit configurations and de-

tector types. Star scanners have been classified into several categories

depending on the number of detectors, the slit or detector configuration,

and the characteristics of the detectors employed.

Star scanners determine attitude by identifying and measuring the

positions of stars as they cross the detector field of view due to vehicle

rotation. The spectra, intensity, and distributions of stars are important

considerations in the design. Silicon detectors which respond to longer

wavelength light have an advantage over visual light detectors such as most

photomultiplier tubes, because there are more cooler stars in the sky which

have the peak of their radiance distributions at longer wavelengths.

The various possible detectors are examined in detail, and compared

under operating conditions found in star scanner applications. Photo-

multiplier detectors are generally limited by background noise from the

general sky background, while silicon detectors are limited by dark current

noise. Developmental low leakage silicon diode detectors can outperform the

photomultiplier detector in this star scanner application when they are

used as an array of a number of detectors.

The signal to noise required for proper sensor operation is determined

not by the accuracy requirements, but rather by the necessity of minimizing

"false alarms", mostly due to dimmer stars crossing the detector which will

have a low but still significant detection probability. Using a 50% margin

of safety, this leads to a requirement that at normal cruise spin speed,

the minimum intensity star that must be detected under the worst case

1
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orientation conditions must produce a signal to noise ratio of 20.

Stray light, that is light reaching the detector from light sources out-

side the field of view, is a major problem in the design of star scanners.

Stray light can come from the sun directly or from planetary albedo. Stray

light can cause an increase in noise level, or can appear as an interfering

signal. The stray light rejection required depends on the details of sensor

design and the definition of rejection, but can be as high as 10
2
for a

typical sensor using a photomultiplier tube detector. Sensors using silicon

detectors are generally less sensitive to stray light; depending on design

details, they require stray light rejection ratios one or two (or even more)

orders of magnitude smaller than required by a photomultiplier detector

sensor.

Rejection of stray light is accomplished primarily by a sunshield or baffle

which prevents most out-of-field light from reaching the optical system. The

design of the optical system, the optical cavity, the detector geometry, and

the information processing techniques are important also. A two stage cone

baffle is recommended for this application, and a set of parametric curves

for this design is presented.

Baffle rejection must be measured in order to have confidence in the

design, but conventional measurement techniques are limited in their capabilities

and are not adequate to measure the high rejection ratios required. Two

techniques are recommended which could potentially be developed into suitable

measurement systems for this application.

Based on the attitude determination requirements, and the parameter

relationships developed in the study, preliminary design specifications have

been developed for two sensor systems which will meet all requirements. One

sensor design is a photomultiplier "V-slit" reticle type. It features a

5 centimeter diameter aperture and a 45 centimeter long baffle. Two separate

mechanisms are included to protect the photomultiplier tube from damage due

to high light levels.

The second sensor uses an array of eight silicon photodiode detectors

which make the sensor more sensitive than the first sensor, so that an

2
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aperture diameter of only 3.2 centimeters and a baffle length of only 28 centi-

meters can be employed. No protection mechanisms are required. This sensor

design is considered more developmental than the photomultiplier tube sensor.

Both sensor designs can meet all attitude determination requirements, and

allow complete freedom to modify the mission profile without constraint due

to attitude determination ability. Several ways have been investigated, how-

ever, in which the requirements could be relaxed to simplify the sensor system,

or to reduce its size, weight, power, or cost. These include reducing redundancy

requirements, the spin speed or speed range requirements, or the ability to

operate in worst case orientations. Reducing the accuracy does not produce

significant benefits.

Fifteen organizations which have been associated with star sensor design,

development, or operation were contacted to determine if they had any applicable

hardware or technology. Several operational sensor systems have been identified

which have capabilities somewhat similar to those required for this mission.

All are sufficiently different, however, that they would require extensive

modification to be suitable, and it is felt that a new design employing proven

concepts or components from some of these present systems, is the most cost

effective approach.

LOCKHEED MISSILES & SPACE COMPANY



SECTION 2

INTRODUCTION

The Pioneer Venus program will conduct scientific exploration of the

planet Venus and its environment. The spacecraft will consist of a basic

bus, which will carry additional systems to carry out either entry probe

missions or Venus orbiter missions.

The Pioneer Venus spacecraft will be a spin stabilized system,

capable of propulsive maneuvers to perform mid-course trajectory corrections

during the inter-planetary flight from Earth to Venus, and capable of attitude

maneuvers for probe deployment, orbit injection, and orbit correction at

Venus. The performance of these maneuvers requires that the orientation of

the spacecraft spin axis be determined and controlled with respect to an

inertial reference. A previous study (Reference R 7) for the Pioneer

Venus missions showed selection of a Star Field Scanner concept together

with a solar aspect sensor for spacecraft attitude measurement. A system

of this type has been previously flown in Earth orbit, but due to lack of

interplanetary flight experience, further study is necessary to properly

assess technical feasibility, system interface considerations, and cost of

flight hardware developemtn.

The objectives of this study, as listed in the statement of work,

are:

(1) To identify and clearly understand the critical factors which

determine design and performance of Star Sensor/Scanner

systems in configurations as they would apply to the Pioneer

Venus missions.

(2) To identify and analyze the important tradeoffs which relate

performance to design, and design to cost, reliability,

spacecraft interface, and operational flexibility.

(3) To provide preliminary design definition for the concept

or concepts which show greatest potential for the Pioneer

Venus application.

#1
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(4) To determine and assess the feasibility of implementing the

candidate design or designs.

(5) To identify any critical problem or development areas

associated with the selected designs.

An additional objective was to determine if there are any existing star

scanner systems which could be applicable to this mission, perhaps with

modification.

To meet the objectives, the work was organized into five tasks.

They are:

(1) Survey current aerospace program hardware and technology and

identify any candidate hardware, systems, and/or system concepts

applicable to the Pioneer Venus missions. Considerations should

include PM tube as well as solid state sensor devices. Describe

the systems identified in terms of basic design, approach and

development status.

(2) Define the critical design and integration parameters for the

star sensor/scanner systems and determine the sensitivity of

these parameters to system performance characteristics.

(3) Evaluate, by tradeoff and analysis, the effectiveness of the

identified systems and system concepts in terms of:

(a) Attitude determination performance

(b) Spacecraft integration requirements

(c) Operational Constraints

(d) Design Feasibility, Complexity and Cost

(e) System Reliability

(4) Select a preferred system and promising alternates. Provide

preliminary design specifications for these systems.

(5) Identify potential or known problem areas associated with the

designs considered, and describe alternative solutions. Describe

the critical failure modes and their effects as related to per-

formance of the system.

Preceding page blank-
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The work performed under these tasks has been reorganized for this

report. The work of tasks (2) and (3) are primarily found in Sections 5

through 9, the preliminary design is in Section 10, and task (1), the survey,

is covered in Section 12.

The major problem area identified is the rejection of stray light,

which is covered in Section 9. Other potential problems are the susceptibility

of photomultipliers to damage from high light levels and the developmental

status of the very low leakage silicon diode detectors. Both topics are

discussed in Section 7.

1



SECTION 3

SYMBOLS

A pulse amplitude

AD area of detector, cm2
D 2

Ao area of optical aperture, cm

a resolution element size, degrees

D, Do diameter of optical aperture, cm

e electronic charge, 1.6 x 10 1 9 coulombs/electron

FAR average false alarm rate, per second

FOV field of view, degrees

f1 focal length, centimeters

Af bandwidth, Hertz

I intensity, watts/cm2

IB background generated current, amperes

ID dark current, amperes

INB background generated noise current, amperes

IND dark noise current, amperes

INJ' Johnson noise current, amperes

INS signal generated noise current, amperes

Io incident intensity, watts/cm2

Is signal generated current, amperes

i
T

total detector current, amperes

is detector signal current per square centimeter of optical aperture

K Boltzmann's constant, 1.38 x 10
'
7 3 watt-secP0K

L length of inner baffle, cm.

L' length of total baffle, cm.

length of detector, cm.

M,m magnitude of star

Mv visual magnitude

M(Si) Silicon (detector) magnitude

N number of surfaces

n number of detectors

LOCKHEED MlrslI FWS & sPAeF C(nJPD&MV
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NEP noise equivalent power, watts/2 Hz

Pd probability of detection

R resistance, ohms

RAPB stray light rejection, definitions (A) and (B)

r response factor of filter

T temperature, degrees Kelvin

t time, seconds

W width of inner baffle

W' width of total baffle

WD width of detector, cm.

ar slit or detector width, degrees

X wavelength, micrometers

optical transmission

Or inner baffle rejection angle, degrees

o' outer baffle rejection angle, degreesr
Td dwell time of light signal, seconds

Tr rise time of pulse, seconds

a standard deviation of distribution

n solid angle field of view, steradians

Owt angular width of detector, radians

w, Ws vehicle spin speed, radians/second

10
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SECTION 4

PIONEER VENUS ATTITUDE DETERINATION REQUIREMENTS

The requirements for the attitude determination system for the Pioneer

Venus mission are based on the earlier Planetary Explorer Studies by the

AVCO Corporation and the Goddard Space Flight Center. These requirements

are described in the statement of work for this study, and have been con-

sidered as the maximum requirements of the mission. The study team also

addressed the question of how these requirements could be relaxed to

simplify the sensor system or reduce its costs, size, weight, power or

other parameters, yet retain sufficient capability to perform the missions

as they are currently conceived. The requirements as listed in the Star

Field Attitude Sensor Study Statement of Work are reproduced below.

(1) General.

The Pioneer Venus spacecraft will be spin stabilized for attitude

control. The primary spin axis orientation (cruise mode) will be either

perpendicular to the ecliptic plane or parallel to the ecliptic plane;

the choice to be made based on the results of system design studies current-

ly being initiated. For the case where the spin axis is oriented perpendicular

to the ecliptic plane, attitude reference accuracies require Sun sensors and

star sensors/scanners. In general, maneuvers, involving precession of the

spacecraft spin axis would be performed by first ascertaining or confirming

the cruise or premaneuver attitude, commanding a series of reaction jet pulses

aboard the spacecraft to effect the required precession, and then determining

the new spacecraft attitude with respect to inertial reference. The attitude

orientations conceivably required include the full 4 r steradian angle.

After performance of a function at the new attitude, (i.e., velocity

correction, probe release, etc.), the spacecraft would then be precessed back

to its cruise orientation. Attitude measurement would confirm that the cruise

orientation was properly restored.

L1
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(2) Attitude Determination

The system must be capable of determining the spacecraft spin axis

orientation with respect to inertial reference throughout the Earth-Venus

interplanetary trajectory, the probe mission terminal trajectory, or the

orbit injection and the Venus orbital trajectory (excluding eclipse

periods).

(3) Accuracy

The orientation of the spacecraft spin axis is to be determinable to

within +0.10, as the maximum accuracy requirement; up to +1.00 as the

minimum accuracy requirement. This range of accuracy is given to pro-

vide latitude in the analysis of design considerations, so that tradeoffs

for this key performance parameter can be developed.

(4) Spacecraft Spin Rate

The system must be capable of functioning with its required accuracy

for spin rates of 5 rpm or greater.

(5) Spacecraft Nutation

The system must be capable of proper function with a spacecraft nutation

of 20 at wobble frequencies of up to 3 rad/sec.

(6) Stray Light

The system must be capable of proper function with the spacecraft in

full sunlight, maximum Earth albedo and Venus albedo as are anticipated

for the interplanetary and near planetary trajectory conditions.

(7) Response Period for Attitude Measurement

The time required between initiation of the attitude measurement function,

and receipt on the ground of the actual orientation data should be minimized.

A near-real-time (excluding light time considerations) availability of

attitude measurement is highly desirable.

(8) Spacecraft Integration Requirements

The system must be integratable with a spin stabilized spacecraft with

minimum impact. Weight and power requirements are to be minimized. Con-

siderations should be given to magnetic cleanliness, number of discrete

commands required, unusual power conditioning requirements, etc.

12
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(9) Operational Constraints

The system should be designed to avoid conditions which would prohibit

or limit the function of other elements of the spacecraft system or reduce

maneuver flexibility during the re-orientation and attitude measurement

sequence. All commandable functions should effectively be reversible.

(10) Redundancy.

The system must include provisions for redundancy and backup which

strictly remove the mission critical functions from the vulnerability of

single point failures.

(11) Assumptions for Initial Conditions

It may be assumed that a priori knowledge of approximate orientation

is available for all attitude determination requirements, however, this

dependence should be minimized and considerations given to strategies and

designs which would permit independent function for recovery from an

initially random orientation.

13'
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SECTION 5

STAR SCANNERS - TECHNIQUES AND CIASSIFICATIONS

Star field scanners, or simply star scanners, have a number of basic

similarities, and are all basically designed to perform the same function,

that of determining attitude. The technology survey (Section 12) reveals

that a number of star scanners have been built, designed, or proposed for

a variety of applications, and have many widely differing parameters such

as various slit configurations, fields-of-view, and such. A number of

studies have examined star field scanners for various applications, and

have made a variety of recommendations. Reports describing the results

of many of these studies are listed among the references (Section 14).

This section attempts to isolate the essential features of all star

scanners, and to classify the various types into meaningful categories.

WHAT IS A STAR SCANNER?

A star scanner is an instrument which scans the sky and responds to

light from stars it views in this process. These "star crossings" permit

determination of the spin axis orientation once the stars have been identified.

All star scanners have the same basic components, namely an optical system,

a means of scanning the optical line of sight through a search field (for

spinning vehicles, the use of the vehicle rotation is most practical), a

reticle at the focal plane defining one or more instantaneous fields of

view, and one or more detectors which respond when a star is in the

field-of-view, and appropriate processing electronics.

Determination of the vehicle attitude requires four basic steps:

( 1) MeasuremEt of the location of the stars in the search field

(vehicle coordinate system)

(2) Identification of the measured stars.

(3) Knowledge of the star positions in celestial coordinates.

(4) Transformation between the vehicle coordinates and the

celestial coordinates.

/4
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At least three independent measurements must be made in order to perform

the transformation which determines the vehicle attitude. These can involve

two separate measurements on the same star, such as measuring both elevation

and azimuth. If one has other knowledge, the required number of measurements

may be reduced. For example, if the position of the sun is known in both

elevation and azimuth, only one further measurement is required. For this

reason, it is highly desirable to include a sun aspect angle sensor on the

spacecraft to provide redundancy and simplify the requirements on the star

scanner.

CIASSIFICATIONS OF STAR SCANNERS

Star scanners may be classified in three major ways.

(1) They employ a single detector, or more than one detector.

(2) They use a single slit(to make measurements in one axis only) or

they use multiple slits or an array of detectors (to measure

star position in both azimuth and elevation).

(3) They employ a photomultiplier detector or a solid state detector

or array.

There are many other ways in which star scanners may be classified, but

these appear to be the most fundamental and meaningful for this spinning

vehicle application.

Classification (1) - Single or Multiple Detectors

This classification is important for two reasons. First, multiple

detector sensors generate more information per star crossing, and thus

require somewhat different signal processing methods. Second, for a given

total sensor field-of-view, and slit or detector configuration, the sensitive

area of each detector will be smaller when more than one detector is employed.

Since most noise sources such as background noise and dark current noise are

directly dependent on the sensitive area of the detector, the noise is

smaller in a multiple detector sensor and thus its sensitivity is higher.

All else being equal, the sensitivity will increase as (n)1 /2 where n is

the nnmber of detectors.

Preceding page blank 16
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Classification (2) - Single Slit or,Multiple Slit

A single slit sensor can perform only one measurement on a star that it

views, that of measuring the azimuth position. The elevation of the star can

be anywhere within the elevation field-of-view. Multiple slit detectors

generally measure a star position in both azimuth and elevation, thus obtain-

ing two of the three measurements required for attitude determination on a

single star. Essentially all multiple detector sensors are also multiple

slit sensors as well, but single detector sensors can fall in either category.

The single slit approach has one major advantage, that of minimizing

background noise for a given field scanned. The scheme does require more

stars to be observed, however, a minimum of three stars when the sun position

is not known. Maximum accuracy is achieved when the sensor is oriented near

the spin axis, but this reduces the solid angle of sky scanned. Because more

stars are required for attitude determination, the field of view must be

larger than the multiple slit approach and/or the sensor must be more sensitive

so that dimmer stars may be detected. These features place a more severe

requirement on baffling and make baffling more difficult. Because a star

crosses the detector only once per scan, false alarms can be distinguished

only by observing repeated scans, which means that, all else being equal,

the single slit sensor requires a larger signal to noise ratio than a multiple

slit sensor where false alarms can be rejected if they do not fall into an

acceptable pattern. Star identification is a major problem with a single

slit, and apriori attitude information is nearly essential. This is because

star identification is based primarily on measuring angular distances between

the various stars observed. The single slit sensor provides only very crude

information on these angular separations because it only measures the azimuth

position of each star. The multiple slit sensor, on the other hand, measures

both azimuth and elevation of each star and the angular separation of all

stars observed can be easily calculated.

The multiple slit approach does present a larger sensitive area and

consequently has a larger background noise for a given elevation f.o.v.

when only one detector is employed. However, the f.o.v. can be much smaller

with this scheme due to the fact that only two stars are required for attitude

determination. In the case where sun aspect angle is known, only one star

17
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need be observed. The smaller field of view is also very desirable from a

stray light rejection view point. Because only one star need be observed

when the sun position is known, because stray light rejection is improved,

and because star identification is much easier, the multiple slit method is

recommended over the single slit approach for the Pioneer Venus application.

A wide variety of multiple slit designs have been built and proposed.

The simplest is the "V-slit" which consists of two separate linear sensitive

areas placed at an angle to each other. Most of the more elaborate multiple

slit arrays such as the "N-slit" or the "W-slit" configurations are merely

somewhat fancier versions of the simple "V-slit." The basic purpose in adding

extra elements to the basic configuration is to resolve some of the ambiguities

which can arise when stars are more closely spaced than the maximum-spacing

between slits so the series of pulses from each star overlap. Although this

does serve to reduce the ambiguity, when a single detector is employed, the

noise also increases. Ambiguities can be removed in most cases, by encoding

the amplitude of the star crossing signal, and this is the recommended

approach rather than adding additional slits to the basic V-slit design.

A second way in which multiple slits can be employed, is by "coding"

the slit pattern by using parallel slits which will then produce a coded

signal when a star crosses. This was used on the Project Scanner sensor.

It has been shown (Reference R 3) that this is generally an undesirable

scheme since as more slits are added to generate or increase the code

length, the noise increases also such that the sensor becomes less sensitive.

Classification(3)- Photomultiplier Tube or Solid State Detector

The operating characteristics of these two types of detectors are

radically different and thus sensors employing them have different

characteristics. The photomultiplier tube is a high vacuum electron tube

requiring high voltages and is sufficiently bulky so that it is practical

to employ only one tube per sensor. Such devices then obviously also fall

in the single detector classification. Solid state detectors, on the other

hand, are small and require only low voltages for operation, and can be

easily fabricated into arrays. The two detector types differ in their

18
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limiting noise mechanisms and their sensitivity under various operating

conditions, their susceptibility to damage, and in many other ways. De-

tectors are discussed in detail in Section 8.

Classification of Existing Star Scanners

All the sensors covered in the technology survey can be classified in

each of these three ways. Although these sensors are discussed in more

detail in Section 12, it is informative to examine them in light of these

classification schemes. Table 5-1 shows these classifications. It is not

clear from the information available whether either of the Pioneer Venus

proposals use a single detector or multiple detectors.

Most operational systems use a single P.M. tube detector and employ a

multiple slit reticle which measures star positions in two axes. The solid

state sensors also use the multiple slit reticle except for the Pioneer

Jupiter sensor which is designed as only a roll position indicator. The

SCADS system is the only operational single slit sensor of the general type

required for Pioneer Venus. It uses a 25 degree long slit which does not

compromise stray light rejection because it is mounted on the spacecraft so

that it always points more than 90 degrees from the sun. Unfortunately,

the Pioneer Venus sensor can't use such a simple solution.

19
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SECTION 6

STELTAR TARGETS AND BACKGROUND

A star scanner provides information for attitude determination whenever a

sufficient number of stars (at appropriate angular separations) are detected -

and identified. The number of stars detected depends upon sensor parameters

which can be varied by the sensor designer, such as field of view, sensor angle

to the spin axis, and upon sensor sensitivity. The number and identity of

the stars detected will depend on the attitude of the spacecraft.

Given knowledge of the field of view, aspect angle, and sensitivity of the

sensor, the number of stars which would be detected can be determined for any

attitude of the spacecraft. In some instances, sensor aspect angle can be

preadjusted for detection of an optimum number of stars when the spacecraft

is at its nominal cruise mode, or for particularly important maneuvers or

operations.

To meet the Pioneer Venus attitude determination requirements, the

sensor system must be able to determine attitude at all orientations. Since

it is impractical to simulate all possible vehicle attitudes, fields-of-view,

sensitivities, and aspect angles, we must make use of general analytic methods.

Stellar Irradiance

The apparent brightness of stars (irradiance received at the earth at a

given wavelength) is measured in modern astronomy on a logrithmetic scale

derived from the visual magnitude scale of ancient Greek astronomers. The

"apparent magnitude" of a star refers to its observed brightness, which

depends on its actual brightness, its size, and its distance from us. In

the modern system irradiance is defined for a fictional star which is

"zero magnitude" at all wavelengths (and, therefore, in each selected spectral

band). The magnitude of a particular star (at wavelength X or bandwidth

½ to X2) is then determined by the relationship, log (ln/lm) = 0.4 (m-n).
If n refers to one "zero magnitude" star, the magnitude of the star is

21
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given by m = 2.5 log (ln/lm). If the star irradiance, A, is 100 times that

of our reference star, log (ln/lm) = log 1/100 - -2, so the star has a magni-

tude m = -5. If the reference star is 100 times as bright as the star, then

m = +5. Thus, our magnitude scale forde.scribing stellar irradiance has the

property that bright stars have small or negative magnitudes, and dim stars

have large positive magnitudes. Excepting the sun (mv= -26.8), the visual

magnitude of observed stars range from -1.4 m
v for the brightest starj; (Sirius)

to about +24 for the faintest star recorded with the 200 inch telescope.

The irradiance received from the moon and planets is also frequently expressed

in equivalent magnitude, but varies with viewing geometry and distance.

Figure 6-1 from reference P1 indicates the relationship between viewed

magnitude of the planets and brighter stars, their intensities, and the number

of stars brighter than a given magnitude. The observed intensities at visual

and photographic wavelengths are well documented for all of the brighter

stars. Forbes and Mitchell (Reference P2) using narrow band spectral

measurements on 964 bright stars, have calculated the response of six

different photocathode materials and the silicon detector to light from

these stars. Although none of these stars are south of declination - 20

degrees, the response of such stars can be readily determined from a knowledge

of star operational characteristics and viewed magnitude relative to a

similar observed star in the northern hemisphere.

Star Distribution and Required Sensor Scan Field

The angular distribution of the stars observed from the earth is determined

to a large extent by the location of the sun near the edge of our galactic

system. Figure 6-2 (Ref. R 1) illustrates the general distribution of integrated

starlight seen from the earith in a spherical coordinate system with its poles

parallel to the poles of our galaxy. It can be seen that most of the star

energy observed is concentrated in the plane of the galaxy (commonly known

as the Milky Way). It can be seen from the figure that the total light

varies over a wide range, from well below the average level of 100 tenth

magnitude stars per square degree to over 700 tenth magnitude stars per square

degree. This star background is the limiting noise source for sensors using
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photomultiplier detectors. Many of the bright stars we see appear bright

primarily because they are near to us, and, therefore, are distributed

in more nearly random directions than the majority of stars.

For any given sensor field of view, aspect angle on the vehicle, and

limiting magnitude sensitivity,one can determine which stars will be seen

by the sensor at any given orientation. This procedure can be used to insure

adequate star scanner performance for critical attitudes of

the spacecraft. It is also possible to compare results from attitudes spaced

around the celestial sphere and thus, estimate the probability of detecting

a given number of' stars at random attitudes.

Simulations for statistical analysis have been made for a number of types

of star sensors, most considering stars in or near the visual spectrum.

.Studies have been performed for both circular fields of view and annular

fields of view typical of star sensors on spinning vehicles. Such simulations

are valid for specificcases of size and shape of field of view, and for the

investigated sensitivity. It is desirable, however, to have a means of pre-

dicting the probability of detecting the required number of stars for the

general case.

In Figure 6-3 the lower curves show (as a function of limiting visual

magnitude) the area of the sky which would have to be viewed (in either a

circular or aniular field of view) to detect one or two stars, if stars

were unifornly distributed on the celestial sphere. The curves at the

upper right showfor spinning vehicles, an emperical boundry for the

requirement of one star 99-100 percent of the time. This curve is based

on a number of specific studies. It has also been found that studies con-

sidering circular' fields of view result in approximately Lhe sane curve

for the worst case orientations and visual stars.

In order to extrapolate the coverage requirement for visual star

magnitude to other spectral regions it is necessary to consider the relative

number of stars in the selected spectrum and the visual spectrum at various

magnitudes. In addition, since the individual stars which will be bright-

est vary with sensor spectral response, the spatial distribution of the
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stars will vary. The distribution generally becomes somewhat more uniform

for bright stars at longer (redder) wavelengths but is probably not

significantly improved for silicon over visual sensor.

Figure 6-4 shows the number of stars brighter than a given magnitude

for visual and silicon detector. The silicon curve is derived from an

analysis of the data of Forbes and Mitchell for the 964 bright stars men-

tioned above. This shows that for any given magnitude, the silicon detector

"sees" significantly more stars than a detector which responds to visual

light such as many photomultipliers. This constitutes a significant advan-

tage for the silicon detector.

Figure 6-5 shows the area of sky which must be scanned to see a certain

number of stars brighter than a given magnitude. If the sensor scans 6

percent of the sky, for example, a silicon detector must be sensitive to

stars as dim as 2.5 magnitude, and a visual detector must be sensitive to

stars as dim as 3 magnitude to be assured of seeing at least one star in

the scanned field. It may be noted that the average number of stars seen

is much greater than the worst case. The percentage of sky scanned by a

sensor with a given elevation field of view and mounted at a given aspect

angle is shown in Figure 6-6.
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SECTION 7

CONVERSION OF STAR LIGHT INTO ELECTRICAL SIGNAIS

One of the fundamental elements of all star scanner systems is a

device which converts the light radiation from stars into electrical signals.

These devices are known as detectors, and there are several types of detectors

that could potentially be used in star scanners.

Detectors which have greatest sensitivity in the general region where

many stars have their radiance peak are of most interest. This region is

the visible spectrum plus narrow regions of the ultraviolet and infrared

spectrums to either side of the visible. Star energy falls off rapidly in

the ultraviolet as one passes to the short wavelength side of the star

radiance peak, and detectors for the infrared region require cooling for

maximum sensitivity if their cutoffs approach two microns or so. The search

for suitable detectors then centers on a comparative few in and near the

visible region. These are photoemissive devices, particularly photoamulti-

pliers, silicon or germanium photodiode detectors, and photoconductors such

as cadmium sulfide and cadmium selenide.

These detectors fall into two basic categories, the photomultiplier

detectors and the solid state detectors. All the solid state detectors are

similar in that they can be fabricated in arrays', are small in size, and

require low voltages and consume little power. Because they are similar in

these fundamental characteristics, these detectors may be compared fairly

directly. The silicon and germanium diodes are particularly similar, both

being diamond lattice structure intrinsic semiconductors and forming diodes

with impurity doping. The germanium diodes are sensitive to slightly longer

wavelengths, (i.e. a cutoff wavelength of about 1.8 um vs. about 1.1 um for

silicon.) The technology of silicon diodes is much better developed for detector
purposes, with much better dark current characteristics, and as a consequence

the germanium devices are little used compared to silicon detectors. Silicon
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photodiodes are clearly the choice over germanium photodiodes for star

sensor applications.

Cadmium sulfide and cadmium selenide are photoconductors rather than

photovoltaic devices. They change in resistance when illuminated rather than

generating a current as do the photodiodes. These devices are produced by

depositing thin films of these materials on suitable substrate, and the

active areas are defined by depositing masks and electrodes. The production

of these devices is somewhat an art, and the characteristics of the materials

can be modified by impurities and heat treatments. They have two character-

istics which make them unsuitable for this star sensor application, First,

they exhibit "hysteresis" or "light history" effects which means that their

response depends to a great extent on their exposure to light levels previously.

This effect is significant enough to cause major calibration and threshold

errors. A second related effect which is even more important is that these

detectors exhibit very long time constants at the low light levels of interest,

and the time constants change with light intensity. This, too, makes

calibration difficult. The only star scanner system to use cadmium sulfide

or selenide detectors was the earlier SPARS system under development by CDC.+

To control the time constant, the detectors were illuminated by a constant

light source which stabilizes the time constant but also reduces the detector

sensitivity significantly. later SPARS designs did not use cadmium

detectors. Because of these characteristics of the cadmium sulfide and

selenide detectors which make them unsuited for use in the star scanner

systems, and the superiority of the silicon photodiode over the germanium

photodiode, the only type of solid state detector which will be considered

further for this application is the silicon photodiode.

The detectors of interest for this star scanner application are thus

the photomultiplier tube with various possible types of photocathode materials,

and silicon photodiode detectors. Most of the operational star scanner systems

which were covered in the technology survey employ photomultipliers, all of

them manufactured by EMR Photoelectric Division of Weston Instruments, and they use

photocathode materials with the highest quantum efficiency and which have

the largest response for most stars which are the bi-alkalai and the S-20 types.

* Control Data Corporation
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The Pioneer Jupiter star sensor is the only item of flight hardware

covered in the survey to use a photodiode detector. A number of manufacturers

have proposed and/or are developing other silicon detector star sensors, but

they have not been demonstrated in flight hardware. The following sections

will examine these two types of detectors in more detail.

PBDTOMULTIPLIER DETECTORS

The photomultiplier tube is a form of high vacuum electron tube where

light falling on the photocathode surface liberates electrons. This electron

current is amplified in a series of dynodes by the process of secondary

emission, so that the output current at the anode is larger than the cathode

current by a factor of typically a million or so. For many applications,

including the star sensor application, this amplification process introduces

only negligible noise, so that the signal to noise ratio at the output is

essentially the same as that at the cathode. This "noiseless gain" of the

photomultiplier is the essence of its advantage over solid state detectors,

because the noise (usually background noise in this sensor application) is

amplified in the tube to a level such that it dominates noise introduced in

the following electronics.

It is not the purpose of this section to describe in detail the con-

struction and operating characteristics of the various forms of photomultiplier

tubes. Many volumes have been written on this subject and a few are listed

in the reference section of this report. Rather the characteristics of the tubes

suitable for star sensor applications will be reviewed, and sensor design

criteria will be developed based on these characteristics.

Being an electron tube, the photomultiplier has a significant physical

size, typically about 1 3/8 inches in diameter and 4 1/4 to 5 inches long

for the tubes used in operational star scanner systems. High voltages are

required for their operation since a minimum potential is required between

successive dynode stages to accelerate the electroncs sufficiently to produce

secondary electrons upon impact. The total tube potentials must be a minimum

of about 1000 volts and generally run in the range of 2000 to 3000 volts.

Thus a high voltage power supply is required in the instrument and the high
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voltage areas must be carefully potted to eliminate corona discharge

problems in the low pressure environment of the space vehicle. Because

of the size of the photomultiplier tube and its power supplies, it is

impractical to include more than one tube in a Pioneer Venus star scanner,

and thus such an instrument is limited to a single detector channel which

imposes restrictions on the sensitivity of the system and provides a

critical failure path.

There are many different photocathode materials in use in photomultiplier

tubes, with many different spectral characteristics. The S-20 and bialkali

cathodes are of most interest in this application because their spectral

range matches most stars well and they have comparatively high quantum

efficiency. Both materials have their spectral peak at about 0.4 microns

and cutoff at about 0.3 microns on the short wavelength side. The S-20

response extends to nearly 0.8 microns while the bi-alkalai cuts off at less

than 0.7 microns. Quantum efficiency is the probability that a photon

striking the photocathode will release an electron, and both these materials

have a quantum efficiency of about 20% at the spectral peak.

The response time of photomultiplier tubes is much faster than is

required for this star scanner application. The limiting factor is the time

spread of an electrical pulse as it is amplified in the dynode chain due to

the variation in possible path length the various electrons travel. Photo-

multiplier tubes of the "venetian blind" structure, which is the structre

typically used in star scanners, have a rise time of 12 to 15 nanoseconds

and focused dynode configurations are much faster. Since this star scanner

application only requires frequency response to a few kilocycles at most,

depending on spin speed and slit width, all photomultiplier tubes have more

than sufficient speed.

The photomultiplier tubes that have been flown in space have been of

a rugged construction in which Kovar rings supporting the elements are sealed

between glass rings to farm a very strong one piece structure. Such tubes

are rated to withstand 100g's shock and 30g's vibration and have been tested

to much higher levels. Because of the rugged structure, the microphonic
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response of these tubes is very low. The presence of the magnetic alloy

Kovar in the tube structure provides some magnetic shielding for the

"electron optics" in the tube, and make these structures less susceptible

to degradation by magnetic fields. Conventional tubes can be severely

degraded by fields as low as two gauss, while the venetian blind tube

with Kovar rings can operate with only a few percent degradation up to

10 gauss or so. The Kovar in the tube can be a problem, however, if other

instruments in the spacecraft are sensitive to weak magnetic fields. A

similar venetian blind tube structure using a ceramic rather than a glass

uses much less Kovar and can reduce such a potential problem.

Photomultiplier Noise Sources

The limiting noise of a photomultiplier tube under very low light level

conditions is shot noise due to dark current in the tube. Dark'current is

random emission of electrons from the photocathode, and it is generally due

to a thermal mechanism so the current can be reduced by cooling the tube. The

sensitivity of such detectors can be measured in terms of a figure of merit

known as noise equivalent power or NEP. This is simply the light signal

level which results in a unity signal to noise ratio when measured in a one

hertz bandwidth. Typical photomultiplier tubes have NEP of the order of

o1016watts/7/H
Z .

In the star sensor application, the photomultiplier is not completely

in the dark but receives radiation from the sky. This background radiation

generates a current which is generally larger than the dark current and thus

the shot noise from this current is the limiting noise mechanism for

practical cases. At high signal levels, shot noise due to the signal current

may also be significant. These noise mechanisms are discussed in greater

detail later in this section.

Damage Mechanisms

Although photomultiplier tubes can be made very rugged to withstand the

expected mechanical environment, there are other mechanisms by which they can

be temporarily degraded or permanently damaged. These mechanisms include

damage to the cathode, dynodes, and anode by large currents, and direct

cathode damage due to high light levels. The currents can be controlled by
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electrical means so that damage does not occur. High value biasing

resistors can limit current in the dynode chain, and the power supply

may be controlled so that the voltage is reduced, or even turned off when

the input light signal gets too high. Such circuits, of course, add to

the complexity and affect the reliability of the instrument, but are capable

of preventing any significant damage to the dynodes which are most susceptible

to current damage. The cathode, however, can not be completely protected in

this way.

Two effects occur in the photocathode at high light levels, the first

being a large increase in dark current due to excitation of metastable states

in the cathode material which decay with a spectrum of time constants. The

recovery time required after exposure to high light levels is dependent on

the product of the duration of the exposure and its intensity. In an appli-

cation such as the star scanner where at certain orientations the photonulti-

plier would see a pulse of light once a revolution (from the sun or plantary

albedo for example), the dark current would build up to an equilibrium value

over many revolutions.

The second effect is permanent damage at yet higher light levels due to

"burning" the photocathode. This would almost certainly occur in a star

sensor if the unit were oriented such that the sun is imaged directly on the

reticle slit, although if an extremely narrow slit were employed and the

vehicle spin speed was fast enough so that the dwell time was very short,

complete damage might not occur in a single exposure. Such narrow slits,

however, require a very high resolution optical system which is a disadvant-

age for stray light rejection as is shown in Section 9.

These damage mechanisms mean that if a photomultiplier tube is used as

the detector in the Pioneer Venus star scanner, protection devices must be

included to prevent degradation and damage. Certainly, the currents must be

limited by the biasing resistors and provision must be made to reduce the

power supply voltages. If the sun will ever strike the reticle slit directly, or

if it is required that the unit recover quickly after being exposed to Venus

albedo, or other high light levels, a shutter must be employed to shield the
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photocathode from light which will increase dark current significantly

or cause permanent damage.

SILICON DIODE DETECTORS

The second type of detector which may be considered for this star

scanner application is the silicon diode detector. This detector has

significant advantages over other solid state detectors as mentioned

earlier and is the only type to be examined in detail here. The principles

of operation are much different than those of the photomultiplier tube,

and thus it has different physical and operational characteristics which

give it a number of advantages and some disadvantages as compared to the

photomult iplier.

The silicon diode is a photovoltaic device which generates a current

when illuminated. The silicon solar cell is identical to the photodiode

detector in principle of operation although the processing details are some-

what different. A Junction is formed near the surface of a silicon wafer,

usually by diffusion of an impurity at high temperature. Using photo-resist,

etching, diffusion, and passivation techniques common in transistor and

integrated circuit processing, many separate diode detectors may be formed

at one time on a single silicon wafer, and complex configurations can be easily

produced.

The silicon diode detector has a wider spectral band than the photo-

cathode materials of interest, and extends farther into the infrared region

where there are more bright stars as shown in Section 6. Also, the quantum

efficiency is much higher than the photocathode materials, being typically

about 70%. Here quantum efficiency is defined as the probability that a

light photon will separate an electron hole pair across the diode Junction,

thus generating current.

One major advantage of the silicon diode detector is that it only requires

low voltages. Where the photomultiplier tube requires thousands of volts

bias for proper operation, and thus a high voltage power supply, the silicon

detector requires only a few volts reverse bias at almost zero power. Another

attractive feature is that no magnetic materials are necessary for its

construction as compared to the ruggedized photomultiplier which uses a large

37

LOCKHEED MISSILES & SPACE COMPANY



amount of Kovar. This could be a significant difference if magnetic clean-

liness is important.

Silicon Detector Noise Sources

The sensitivity of silicon diode detectors at low light levels is

determined by the dark current which has two components. When a reverse

bias is applied (which is desirable to reduce the junction capacitance),

leakage across the diode can occur. This is often a function of the surface

passivation and defects in the Junction. This can be kept small by keeping

the bias low. The second component of the dark noise is due to thermal

generation of carriers which is thought to be primarily due to deep level

impurities in the Junction region. This current will flow at zero bias, and

is a strong function of temperature, falling off rapidly at lower temperatures.

Recent developments have made significant improvement in the dark currents due

to both these mechanisms. Significantly greater sensitivity is now possible

than was obtainable a few years ago, although the best detectors must be

considered as still developmental. As an example of current technology,

United Detector Technology, Inc. claims, in their form 1000 data sheet, a

dark current of 50 picoamps at a five volt reverse bias for their P3I-020A

detector which has an area of 2 x 10
-
3 square centimeters. Fairchild Camera

and Instrument Corporation (Reference 02) has been developing much lower dark

current diode detectors for a different application and have measured leakage

currents of about 10 picoamps or less in a 10 square centimeter detector,

which is an improvement in dark current per unit area of a factor of 25.

The Microelectronics department of Lockheed Missiles and Space Company has

been producing low dark current phototransistors using processing methods

similar to those employed by Fairchild, and sample detectors have been

produced which have similarly low leakage currents.

Even with the low dark currents demonstrated in this developmental

technology, the silicon diode detectors are somewhat less sensitive than the

photomultiplier detectors when directly compared on an equal area basis. A

typical silicon diode NEP would be about 2 x 10-1 5 watts/-/H
Z

as compared to

10
-
16 watts/-/ H for the photomultiplier. The silicon diode, however, because
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of its compact size and low voltage requirements, can be incorporated in

a star scanner in the form of an array of electrically separate detectors,

each of which is of much smaller area than the photomultiplier detector,

and the net effect is that the silicon diode sensor can be more sensitive.

A more detailed and quantitative comparison is included later in this

section.

To take full advantage of the low dark currents of the silicon diode

detectors, large value load resistors must be employed so that the Johnson

noise from the load resistor will not be greater than the noise due to the

dark current itself. Both these noise sources are discussed later in this

section. The load resistor and diode capacitance combine to limit the fre-

quency response of the silicon diode detector. The signal and noise will

both roll off at 6 db per octave from the frequency determined by the RC

product, and the sensitivity will be unchanged up to the point where these

noise sources become less than the amplifier noise. Thus the frequency

response of the silicon detector does not compare with that of the photomulti-

plier, but fortunately the frequency response requirements of this applic-

ation are sufficiently low so that available amplifier technology will not

degrade the performance of the system.

This discussion is based on a simple "voltage mode" amplifier, while

actually it may be advantageous to use a "current mode" feedback amplifier

to reduce crosstalk and facilitate further signal processing, but the basic

sensitivity Jmits are the same for either configuration.

Silicon Detectors Not Susceptible to Light Damage

One of the most important features of silicon photodiodes for this

star scanner application is that they are not susceptible to damage from

high light levels. They can, in fact, survive when the sun is focused

directly on them in a star sensor application, and can tolerate being heated

by such means to several hundred degrees centrigrade without permanent

damage. The dark current will increase drastically at such elevated temper-

atures, so that the detector will be inoperable, but then will cool quickly

if properly mounted to a heat sink. This means that no protective devices

need be included in a star scanner using such detectors.
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When illuminated with high light Levels, the current generated will

cause the potential across the diode to rise to about one volt where

the diode becomes forward biased and the current will flow back across

the detector preventing further buildup of voltage. This voltage will

saturate the following electronicand when the light is removed, the

recovery time will be determined by the RC time constant of the circuit

which, depending on the circuit values, may be fast enough to provide

recovery well within a revolution period, especially at the lower spin speeds.

If faster recovery is required, it may be possible to sense this situation

and provide a means of discharging the diode capacitance with an active

device to shunt the load resistor.

NOISE MNECHANISMS

In the discussions of the characteristics of the photomnultiplier tube

and the silicon diode detectors, several noise sources were mentioned including

background noise, dark current noise, and Johnson noise. This section

examines these and other noise sources which limit the sensitivity of detectors

used in star scanner systems.

Shot Noise

There is a noise associated with every current which is due to the

quantization of charge and the statistical fluctuations which occur as the

charges flow in a circuit. Whenever a current is present, a shot noise is

associated with that current no matter whether the current is a dark current,

generated by background radiation, or generated by signal radiation.

Shot noise is a "white noise" in that it is uniformly distributed across

the frequency spectrum, and thus the RMS noise is proportional to the

square root of the electrical bandpass. The shot noise per root Hertz is

given by

INS = [2e (i + + i) ] 1/2
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where - electronic charge

= 1.6 X 10
'

1 9 coulombs/electron

ID - dark current

iB = background generated current

I
S

= signal generated current

Tp = ID + ig + IS = total detector current

As mentioned earlier, the dark current due to spontaneous emission from

the photocathode of a photomultiplier is usually smaller than the background

radiation from the sky for typical star scanner systems, so background noise

is the limiting noise source. When the signal current exceeds the background

and dark currents, the total current and thus the noise increases. Since

this occurs only when signal is present, it does not affect the false alarm

rate, but only the detection probability.

The dark current of a silicon diode detector exceeds the background

generated current for the sky background levels seen by a star scanner,

so that a silicon photodiode sensor will be limited by the dark current shot

noise. Only for very small detectors where the dark current is small, and

for very large signals will the signal current exceed this dark current so

for most operation with a silicon diode detector the sensitivity of the star

scanner will be determined by the dark current noise.

Johnson Noise

Another form of noise which effects silicon diode applications is

Johnson noise. This is a fundamental noise associated with resistors, and

depends only on the value of the resistor and it temperature.

The Johnson noise current from a resistor is given by

I,, 4KT

01Sr) '/2 L Kf i' (7-2)

where K = Boltzmann's Constant

= 1.38 x 10
'
23 watt-sec/ OK

T " temperature (°K)

R = resistance (ohms)
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Johnson noise is a white noise as is shot noise so that for a given

resistance and dark current the shot noise and Johnson noise will have a

constant ratio independent of frequency or electrical bandwidth. Since

Johnson noise current varies inversely with resistance, it can always be

made smaller than the shot noise by making the resistance large enough. For

example, if the dark current is one picoampere the load resistor must be about

5 x 10 nohm for the Johnson noise to be equal to the dark current shot

noise. Because such high value load resistCrs are required for the highest

sensitivity detectors, the frequency response of such units is limited.

"Excess" Noise

Another noise source which can enter is "excess" noise which can have

several components such as "l/f" noise and "popcorn" noise. Both these noise

sources occur in semiconductors but are not expected to present any practicle

problem in this type of star scanner application. Both these noise mechanisms

are dependent on material processing during device manufacture, but with proper

controls and modern techniques they are well controlled. Popcorn noise in

particular, occurs infrequently and devices can easily be selected which are free of

it. The 1/f noise only occurs, as its name suggests,at lower frequencies and

is not expected to be of concern in the detector element itself for the frequencies

of interest in this application. The amplifiers will have a 1/f noise component

which extends into the operating frequency range but will be well below the

other noise sources such as shot or Johnson noise.

Structured Background Noise

Another noise source is due to structured or modulated background. When

we discussed background noise earlier, we assumed that the background

radiation was uniformly distributed and so the background light intensity

did not vary as the instrument scanned the sky. Such is obviously not the case,

since as was shown in Section 6, the background is made up primarily of

stars which are point sources and they are not uniformly distributed. In

other words, as the instrument scans the sky, light at the detector will

fluctuate as the various sources come into and out of the instrument field of

view, and this fluctuation or modulation will appear as a signal. The maJor
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effect will be caused by the individual brighter stars which may be below

detection threshold but which will have the same frequency spectrum as

the desired star signals. Other fluctuations due to clusters of dimmer

stars will generally generate response at much lower frequencies and will

not add significantly to the noise. This structured noise is significantly

different in character than the white noise sources of shot noise and

Johnson noise, and thus can't simply be added to these other noise sources

but must be considered separately. This is discussed in Section 8.

Stray Light Noise

The final noise source is stray light which can come from the sun

directly or reflected from planets or spacecraft appendages, and can add

to the noise in two ways. Stray light can add to the background, generating

a current and thus contributing shot noise, and because the spacecraft is

spinning it will be modulated and can have some frequency components in the

electronic bandpass. Section 9 discusses this source of interference in

more detail.

NOISE DEPEIDENCE ON SENSOR PARAMETERS

It has been stated above, that the dominant RMS noise sources occurring

in star scanning systems are shot noise due to background light in the case

of the photomultiplier detector sensor, and from the dark current when a

silicon diode detector is employed. This section will discuss the depend-

ence of these and other noise sources on various sensor parameters such as

field of view, aperture area, f/number, spin speed, and the detector

dimensions of length and width.

Figure 7-1 schematically illustrates some of the basic parameters of

the sensor optical system. All light striking the surface of the lens at angles

within the solid angle .f which is the detector field of view will be

imaged onto the detector. The solid angle -1a is determined by the physical

area of the detector and the focal length of the optical system. The optical

system f/number is simply the ratio of the focal length to the diameter of

the aperture, e.g. an f/2 system has a focal length twice the lens aperture

diameter.
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The field of view can be thought of as having two dimensions - an angular

width in the scan direction which is determined by the detector width and

the focal length, and an angular length in the direction normal to the scan

direction determined by the detector length and the focal length. fTe area

of sky scanned per revolution will depend on the angular length of the

detector, while the detector angular width will determine the dwell time of

a signal at a given spin speed.

As shown earlier, background noise is due to the current generated in

the detector by the background radiation.

CI'),, I2 eeJ IB (7-3)

The background generated current is proportional to the background radiation

collected by the lens in the field of view or

IB ° A0A - (7-4)

So that the noise will increase as (Ao)l/2 and as ( / )1/2 for a fixed

background. The system f/number does not enter into this calculation.

Dark current noise, on the other hand, depends on the physical area of

the detector, since the dark current is directly proportional to the area (when

surface leakage is negligible).

(z"ft)1 - [)eIloj (7-5)

Io c AD (7-6)

This term is independent of the optical system.
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For a given field of view a = AvD/f , the dark current noise density

oiv /(Af) /2 will vary directly as focal length. This means then for
a fixed aperture, AO, the dark current noise will vary directly as the optical

system f/number, i.e. an f/2 system will result in twice the dark current

noise as an f/1 system.

Thus background noise and dark current noise have significantly different

dependences on the optical system parameters. For a fixed detector field of
view _J , background noise varies directly as the optics diameter (square

root of optics area), but is independent of the focal length. In contrast,

for the same field of view .1 , dark current noise varies directly as the

focal length but is independent of the optics diameter. It is important then

for a star scanner using silicon diode detectors to have a "fast" optical system
(small f/number), but a photomultiplier system which is limited by background

noise does not reduce its noise by reducing the f/number.

Both shot noise and Johnson noise are "white" noise sources, and as such,
vary as the square root of the electrical bandwidth. The electrical band-

width depends on the dwell time of the light signal which in turn depends on

the detector width (angular field of view width) and the spin speed. If we
assume for simplicity, that the sensor is viewing normal to the vehicle spin

axis, and the spin speed is LO radians per second and the detector has a field

of view in the scan direction of J.w WDo/F radians, then the dwell time

iJ for a light spot smaller than the detector is

d = .j. Wo
d co (7-7)

The electrical bandwidth required, a , is given approximately by

4- /z (7-8)

so 4af 2 ~u (7-9)

We have shown earlier that the dark current and background current are both
proportional to the total solid angle field of view of the detector, and thus

the noise current per root hertz 1t dependent on the square root oCr J.

Wo Lo
O) I os . AD/{ ) = (Z (7-10)
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'O',B (afl)'/2 - .. (WL) (7- )

IN e ( LO) ( )" ( ,) 

which is independent of the detector width.

This is an interesting result because it means that as the detector

width is changed the electrical bandwidth changes in such a way to make the

noise constant, and thus the signal to noise ratio is independent of the

detector width. It is also apparent from E¶. 7-12, that the noise varies

as the square root of the spin speed, so the signal to noise ratio will vary

inversely as the square root of the spin speed.

If the sensor field of view is not normal to the vehicle spin axis, the

situation is somewhat more complicated. The detector width must decrease to

keep the dwell time constant, varying as the sine of the aspect angle (the

angle between the spin axis and the sensor field of view). At the same time

the area of the sky scanned per revolution decreases in the same way, so a

longer slit must be used to scan the same percentage of sky. These two

effects exactly compensate each other, in that as the aspect angle of the

sensor field of view changes the length and width of the slit varies to scan

a constant area of the sky and maintain a constant dwell time in such a way

as to make the detector area a constant independent of the aspect angle.

Constant detector area means a constant total field of view solid angle l ,

which means that the noise and hence the signal to noise ratio is independent

of sensor aspect angle for a given scan area coverage and spin speed. This

relationship breaks down, however, for small aspect angles where the detector

width becomes smaller than the blur spot size.

SIGNAL TO NOISE RATIDS FOR SENSOR CONFIGURADOFNS

The various noise sources which limit the sensitivity of star scanners

using photomultiplier and silicon diodes have been discussed above. This

section will discuss the signal to noise ratios that will result when such

detectors are used in a star scanner system. To facilitate direct comparison

of the two different types of detectors, a number of parameters will be fixed

for the purpose of calculating signal to noise ratios for the two systems.
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The dependence of the noise an these system parameters as given above

will allow these results to be easily adjusted for other conditions.

The signal current generated in the detector from a given target

star can be directly calculated from the current information given in

Reference P2 . Those currents is are per square centimeter of aperture

area and assume 100% optical transmissioan. For a given sensor system

with collecting optics area A,, an opt;ical transmission the

signal current is given by

Is - is Ao T (7-13)

The noise is generally shot noise due to the dark current, backgrou

generated current, or signal current and for a given electrical bandwidth

a f the noise current I n is determined from equation 7-1.

IN [ae(IotIst1@ ) t A) (7-14)&

The dark current depends on the detector area, and the background current

depends on the number of equivalent background stars per steradian, the

detector field of view, and the collecting area and optical transmission as

in the signal case above. The signal to noise ratio at the sensor output is

therefore

SNRI i (r) (7-15)

where r is the filter response factor, which for this case is approxisately

0.67.

Figures 7-2, 7-3, 7-4 show the signal to noise ratios which result from

viewing stars with sensors of various types. For purposes of preparing

these curves, the following sensor parameters are assumed.

Ao - 5 cm2 (2.54 cm. - 1 inch diameter)

-T
=

0.8

es = 1.26 rad/sec (12 RPM)

f/number - 1

r - 0.67 filter response factor
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Figure 7-2 shows signal to noise vs star magnitude for a photomultiplier

tube sensor with an S-20 photocathode. At low signal levels, the sensor is

limited by the background generated current. Two backgrounds have been

assumed: 100 tenth magnitude stars per square degree which is the average

background over the entire sky, and 500 tenth magnitude stars per square

degree which is a valuetypical of bright areas of the milky way. As

mentioned earlier, when background noise limited, the noise is independent

of slit width, and only depends on the length of the slit. The 20 degree

long slit would be typical of a two slit (V slit) sensor with an elevation

field of view of 10 degrees. For brighter stars, the sensor becomes signal

noise limited when the current due to the signal exceeds the background current.

In this area, the noise varies inversely as the square root of the detector

or slit width, and is independent of length. Several slit widths are shown

in the figure.

In this signal noise limited region, the signal continues to vary

linearly with light intensity, but now the noise is no longer constant. The

noise varies as the square root of the signal intensity, so the signal to noise

ratio is no longer linear with signal light intensity as was the case when

background limited, but now varies as the square root of the signal level.

In the region where the two curves cross,the noise sources will be comparable

and the total noise will be the root sum of squares of the two. The net

effect is to smoothly round the signal to noise curve in the transition region

from the linear behavior in the background limited low signal level region to

the square root dependence of the signal noise limited region. This refine-

ment has been omitted from the figures for simplicity.

The SCADS star scanner which is currently in use on the S3 satellite

employs a single slit which is 250 long and 0.30° wide. The signal to noise

ratios for this slit configuration with the same sensor parameters is also

shown in the figure. The actual SCADS sensor uses a slightly larger aperture

and spins at a slower speed, so the signal to noise ratios are somewhat larger

for the actual system.

A similar set of curves for a silicon diode sensor is presented in Figure 7-3.

Dark current noise is the limiting noise source for weak signal levels, with

a dark current of one picoampere in a 10 x 1/20 f.o.v. detector typical of

* Small Scientific Satellite
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the developmental detector technology as reported by Fairchild and IMSC

Microelectronics. The curve labled UDT is the larger dark current

technology commercially available from United Detector Technology, Inc.

As in the photomultiplier case, the noise has the square root of area

dependence so the signalto noise ratio depends on the detector length but

not the width. The detector becomes signal noise limited at higher signal

light intensities, Just as in the photomultiplier case. Again the transition

between the two regions is smoothly rounded but has been omitted from the

figure.

Figure 7-4 is a similar plot of signal to noise versus light intensity

showing both the silicon diode detector and the S-20 photomultiplier. The

sensor parameters are the same as for the previous two sets of curves, but

in order to make a more realistic comparison between the two types of

detectors for this star sensor application, the silicon curves have been

displaced toward lower light levels by 0.4 magnitudes. This is done because,

as was shown in Section 6, the silicon detector "sees" more stars in the

sky brighter than a given magnitude than an S-20 detector does. The displace-

ment of the silicon curves allows a comparison of the two detectors on an

approximately "equal number of stars" basis.

The silicon detector has a much larger signal to noise ratio than the

S-20 photomultiplier tube in the large signal region where both are signal

noise limited. This is due to the wider spectral bandwidth of the silicon

detector, and its higher quantum efficiency. These two effects mean that

many more carriers will be generated in the silicon detector for a given

target star than will be released from the S-20 photocathode. For the same

bandwidths (same detector widths) the signal to noise ratio will be higher

in the silicon detector by the square root of the current ratio. For example,

if a given star target generates 6 times more current in a silicon photodiode

than it releases from an S-20 photocathode, the signal to noise ratio for the

silicon diode will be (6)1 1larger than for the photomultiplier tube when

both are signal noise limited.
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SECTION 8

SIGNAL TO NOISE REQUIREMENTS

The previous section developed the relationships between signal to noise

ratio and various system parameters such as optics size, f/number, detector

type and :f'iel.d of view, spin speed, and others. This section will examine

t-he question: What signal to noise ratio is required for proper sensor opera-

tion? To do that we must show how star positions are measured from the de-

tector output pulses, the accuracy with which the positions can be determined

as a function of signal to noise ratio, and how the average false alarm rate

(FAR) and the detection probability Pd also depend on signal to noise ratio

and threshold level. It will be shown that the structured background, that

is the background stars which are below threshold but still have a reason-

able detection probability, is the source of interference which places the

most severe requirement on the signal to noise ratio for this application.

MEAhUREMENT OF STAR POSITION IN THE SPACECRAFT FRAME

Thle position of a star in the spacecraft reference frame is determined

by measuring time intervals between the sun generated clock reference pulse

:nd the detector pulses generated by star images crossing the reticle slits

or detector.

An example of this is shown in Figure 8-1. The particular configuration

shown is representative of a single channel V-slit sensor but the concept is

similar for other multiple slit or multiple detector sensors. As the sensor

rotates, it sweeps a sector that is 100 in elevation angle, in this case,at a

rate determined by the spacecraft spin rate. Each rotation of the spacecraft

will produce a high signal-to-noise ratio pulse accurately referenced to the

sun, which serves as a clock pulse for the star scanner. The' azimuth of a

star in view of the star sensor will be proportional to the time interval, tl;
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the time between the sun reference pulse and the occurrance of the first

stlar pulse. Time (t2 - tl) will be a measure of the star elevation angle in

the sensor field ofi' view. Accurate position determination becomes a pro-

blem of accurate measurement of time differences.

There are several approaches to implementing time interval measurement

which involve various degrees of complexity and accuracy. Perhaps

lhe simplest is a fixed threshold crossing indication, where the interval

1,1 and l,, would be based upon the time from the reference pulse, to the
tilme when thlere is a positive slope crossing of a given voltage level. This

technique incurs errors in the tl measurement as a function of star intensity

since the threshold will trigger at different times for differing input

amplitudes as shown in Figure 8-2. The interval(t
2
- tl) does not have this

error assuming that the same amplitude is generated at each detector or

slit opening, since the threshold will trigger at the same point on each

pulse resulting in a correct difference measurement. The error in the t

interval measurement can be overcome in at least three ways:

(1) by making the threshold occur at a given fraction of the

pulse amplitude;

(2) by differentiating the pulse following the threshold cross-

ing and sensing the zero crossing; or

(3) by encoding the peak amplitude of the pulse following the

threshold crossing.

A f'ourthl, more sophisticated, technique involves performing cross-correlation

following a threshold crossing and sensing the peak of the correlation, but

this method is much too complicated for this application and is not considered

as a serious candidate.

Encoding the peak amplitude following a threshold crossing has two

distinct advantages. First, by knowing the filter response, the threshold

crossing time tl and the peak amplitude, the time of the center of the

pulse can be computed. Second, measuring the amplitude of the pulse will

aid in identifying the stars, and will greatly aid in resolving ambiguities

which can arise if stars are closely spaced. Because of these advantages,

this technique is considered most desirable.
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Errors inlTirme Interval Measurements

Errors from a number of sources will influence the accuracy of the in.-

terval measurement. The principal error sources are:

(1) Input noise

(2) Quantization (digitizing) error

(3) Circuit drifts

(4) Thresholding (amplitude measurement)

(5) Baseline shift due to high pass filtering.

Thle quantization error can be made small enough to be insignificant and,

through multiple measurements, will average the error to a negligably small

value. The remaining errors except input noise will be highly dependent

upon the actual design implementation. For these reasons, only the input

noise error will be examined at this time.

For a measurement made on a single threshold crossing, the noise present

on the leading edge is largely responsible for the error.' If it is assumed

that the rise time of the pulse after filtering can be approximated by

Tr =0. 35 (seconds) (8-1)
if

where T = the 10-90% rise time

and lif = 0.'(07 amplitude Bandwidth (Hz).

Ilowever, since

Ai 1 (Hz) (8-2)
2 r~

and ', = Ca

where T = pulse width (seconds)

a = slit or detector azimuth width (degrees)

w = spin rate (degrees/second)

then

wf = (8-3)
2ra
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Examining Figure 8-3 it is found that the presence of noise will cause

the leading edge to rise or fall relative to its mean value. By approximat-

ing the leading edge between the 10 and 90% points with a straight line, a

perturbation in amplitude aN is seen to produce an error in time of at.

Since the pulse amplitude rises 80% in time Tr,

°N =.8A (8-4)

at r

The value of a t can be related to the angular error a and the rotation

rate by

at G (8-5)
w

Utilizing equations (8-5), (8-4), (8-3) and (8-1) it is found that

T= .875 aN a (8-6)

A

If aN is defined as the standard deviation of a gaussian noise density

function, then c becomes the standard deviation of the angular measurement

$. The ratio A represents the peak signal-to-RMS noise ratio. The ex-

aN

pression is plotted in Figure 8-4 for detector widths of 0.10 and 0.5° .

This shows LhaL for ratios of signal-to-noise 4.4 and greater, the noise

components on a single measurement can be kept under 0.10 for a 0.5 slit

widt.h. If multiple measurements (i.e. data from several revolutions) of

Ihe same star can be obtained the variance (aN2 ) can be reduced by the

number of measurements, or the standard deviation will be reduced by the

square root; of the number of measurements.

The accuracy as plotted in Figure 8-4, is the azimuth accuracy ob-

tainable with a single scan of a configuration such as shown in Figure 8-5 A.

One slit is at right angles to the scan direction, and a second at an

angle e to the first. Because the elevation measurement is the difference

(. 2 - t), the standard deviation of the difference will be -F larger than
the standard deviation of a single measurement. The error of the elevation
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will then be a = 2 a 
a a

tan 6

So for a to equal ae, that is for the azimuth and elevation errors to be

equal

tan 0 = 0 = 55044'

So if the elevation f.o.v. is 100, then the angled slit must extend 140 in

the azimuth direction.

The situation is somewhat different for the reticle pattern B, where

now both slits are angled symmetrically about a center line. The eleva-

tion measurement is still the difference t
2

- tl, and the previous con-

siderations hold, where now

EB
2 tan = tan eA

for equal elevation accuracies.

The azimuth measurement is different for pattern B, however, because

it involves both slit crossings. The time that the star crosses the

center line of the reticle pattern is given by

t 1+ t 2

2

Just as in the difference measurement, the standard deviation of the sum

is f7 larger than the standard deviation of an individual measurement.

Dividing by 2, however, brings the net azimuth error for the single sweep

down to 1/rf of the error present in pattern A, and the symmetrical

approach is superior for this reason. We essentially gain the accuracy

benefits of two separate azimuth measurements in single scan. Configura-

tion B is better from a stray light baffling viewpoint, too, because the

maximum baffle f.o.v. angle is smaller forthe same azimuth dimension,

i.e. one can draw a smaller circle about pattern B.

Actually, the large angles shown in both pattern A and B are larger

than are desirable from a stray light viewpoint. An included angle of

45° as is shown in pattern C, where the azimuth dimension is only about

9 degrees, is much more reasonable from stray light considerations. Here

we are trading off accuracy in the elevation dimension to gain a benefit

in stray light rejection. This is perfectly acceptable since we have more
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accuracy than required anyway. For the 45° angled slits, the elevation error

is about 1.7 times the azimuth error for a single measurement, and Figure 8-4

shows us that we can obtain an elevation error of less than 0.1 degree for a

signal to noise ratio of only about 8 , even with the 0.5° wide slit and the

azimuth error will be smaller by the factor 1.7 x X2- = 2.4.

The accuracy with which the spin axis may be determined having measured

the star azimuth and elevation positions with a certain accuracy is a com-

plicated problem which depends on the number of stars measured and their

relative positions. When only one or two stars are detected, along with the

sun aspect and azimuth measurements, depending on the type of sensor employ-

ed, there are cases where the accuracy is poor because the case is "near

degeneracy." Such cases are very unlikely, however, and for most cases

when more than the minimum number of stars are detected, the accuracy of

spin axis determination is comparable to or greater than the measurement

accuracy on each individual star. If the vehicle is stable (without

nutation or precession), successive revolutions will allow reduction in the

errors by the factor 1/,-n where n is the number of revolutions.

Although the leading edge of the pulse was approximated as a straight

line for the purpose of estimating the error caused by noise components,

the bandpass filters that would be used in this application will not pro-

duce a straight leading edge for a rectangular pulse input. It will instead

have a slope which varies with amplitude, with the maximum slope in the

vacinity of one-half the peak amplitude. It is, therefore, desirable that

the threshold be set near the one-half peak amplitude point. If a fixed

threshold is used then it should be command adjustable so that it can be

set to operate near the 50% amplitude of the bulk of the pulses. Higher

amplitude pulses will cause the circuit to trigger at a lower percent of

peak amplitude and.a lower slope causing a greater error for the same S/N.

In a given orientation if the brighter stars are seen often enough,

the threshold could be commanded to a higher level which increases the

accuracy. Alternately, additional complexity could be included to provide

a circuit that would always make the measurement at the same percentage

amplitude point or to sense the peak of the pulse.
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FALSE ALARM CONSIDERATIONS

The presence of noise in a system implies that at some time a mistake

may be made in assuming a signal was present when in fact it was due to a

random noise fluctuation. In a device which produces an output each time

the voltage rises above a given value, it is important to know approximately

how often an output will be caused by noise instead of signal. This is a

common problem and has been solved and documented. One convenient source can

be iound in the Electro-Optics Handbook published by RCA (reference B 2 )

since it is applied to this exact case. The assumptions for the calculations

are that the noise into the detector can be classified as white gaussian

noise, and that a matched filter is used for signaldetection. Both of these

assumptions are reasonable for this particular case, where the noise is shot

noise due either to background generated current or dark current. The

average false alarm rate (FAR) is given by the expression:

FAR = 1
exp (-It/2In2 ) (8-7)

wihe re

Tj = pulse width

It = threshold level

In = RMS value of the input noise

or Int -2In (2 T (FAR) (8-8)In

Since,

W

FAR = x
T

s
where x = number of false alarms/spin period

T spin period.
s

T(FAR) = x
36500 (8-9)
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lquation (8-8) can be solved in terms of spacecraft revolutions per false

alarm for a given detector or slit width. This is shown plotted in Figure 8-6

for detector widths of 0.10 and 0.5 . The figure shows that the false alarm

rate drops very rapidly as the threshold level is raised. If a detector

width of 0.5
©

is used,only 1 false alarm will occur in 10 revolutions at a

threshold to noise ratio of 3-9.

If inclined detectors or reticle slits are used, an additional qualifi-

cation can be placed upon the data to reduce the false data output, namely,

to process only those pulses which are followed by a second pulse within

the required time interval. An estimate of the probability of getting a

false alarm within a given period knowing the average false alarm rate may

be calculated. Using the Poisson probability density function, the pro-

bability of K false alarms in interval(b-a)is:

P[K /(b-a)] = e 
[

(ba)[X(b-a)]K (8-10)

K!

where X = average number of false alarms/time interval

(b-a)= interval of time

Let X = 1 false alarm
rev.

(b-a) = 10° rev.
360

X(b-a)= 1

The probability of 1 false alarm in interval (b-a) will be:

P(1/½36) = e-1/36(/36 = .027
1

Therefore with an average false alarm rate of l/rev, 1000 false alarms will

be the expected number of false alarms in 1000 revs and on approximately 27

occasions the false alarm will be followed by a second false alarm within

the qualifying time interval. If the false alarm rate is 1/10 revs, then
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the probability of a false alarm in any 100 interval will be reduced to 2.77

x 10 3.

The circuitry required to do this time discrimination so as to only

transmit pulses which fall in pairs within the allowed time intervals adds

complexity and increases costs while it degrades reliability. A tradeoff

inust be made between these complexity, cost, and reliability considerations

and the benefits to be gained by reducing telemetry requirements.

Probability of Detection

Although it is desirable to minimize false alarms, it is equally

desirable to have a high probability of detection when a pulse does occur.

The probability of detection can be expressed as

Pd =1 + erfIs (8-11)
2

where I = peak signal level after passing the band pass filter.

The above expression can be put in terms of average false alarms/rev. and

plotted as shown in Figure 8-7. The curves show that for a slit width of 0.50

and(FAR) of one per revolution, a 90% probability of detection will be ob-

tained at a peak signal-to-RMS noise ratio of 4.6. For 1 false alarm per

100 revolutions, the signal-to-noise must be about 5.8; an increase of only

26%.

INTERFERENCE DUE TO STRUCTURED BACKGROUND

The false alarm rates we have just calculated are due to random noise

fluctuations exceeding threshold, and,as we have seen,a threshold to noise

ratio of about 5, and a signal to noise ratio of 6 or 7 is sufficient to

provide very high probability of detection and a very low false alarm rate.

These calculations have neglected interference due to structured background.
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The background is not the uniform diffuse extended source we have assumed

when we calculated background current and shot noise, but instead consists

mostly of stars which are discrete point sources of varying intensity in a

non-random distribution. As the sensor scans the sky, the light striking

the detector will fluctuate as the various stars come in and out of the

sensor field ol' view. Most troublesome from a noise standpoint, are the

comparatively bright stars which are below threshold level, but because of

the random noise they have a reasonable probability of detection. The pro-

bability of detection can be calculated from Equation 8-11 given earlier as

Pd [ + erf Is -(8-11)

For a fixed threshold and noise, the probability of detection may be calculated

as a function of star intensity. If we choose a nominal detection probability

we wish to use as minimum, say 0.9, then for any given signal to noise ratio

for the limiting magnitude star where Pd = 0.9, the probability of detection

for brighter or dimmer stars depends on the magnitude difference AM. Such a

curve is shown in Figure 8-8, where the signal to noise ratio refers to a

star at. the limiting magnitude which has Pd = 0.9. For a low signal to noise

ratio of 5, it can be seen from the curve that a star a full magnitude dimmer

than the limiting magnitude star with Pd = 0°. will still have a 4% probability

of detection. The curve steepens rapidly for larger signal to noise ratios

and begins to approach the ideal situation which is a perfect step function

where stars brighter than a cutoff have 100% probability of detection, and

stars below the cutoff never are detected.

For a typical sensor configuration, the average number of pulses from

the stars below the limiting magnitude can be calculated from the curves of

Figure 8-8, and the star population versus intensity relations presented in

Section 6. Assuming a sensor which scans 6% of the sky per revolution

(10
©
elevation f.o.v. centered at 450 aspect angle), the average number of

pulses per revolution from stars dimmer than certain limiting magnitudes is

shown in Figure 8-9. If we place the limiting magnitude at 3.0, for example,

69

LOCKHEED MISSILES & SPACE COMPANY



0 1.00.2 0.4 0.6 0.8
PROBABILITY OF DETECTION (Pd)

Fig. 8-8 Probability of Detecting Stars Below Limiting Magnitude

0.1 0.5 1.0 5
AVERAGE NUMBER OF PULSES PER REVOLUTION FROM DIM STARS

Fig. 8-9 Average Number of Pulses from Stars Dimmer than Limiting Magnitude
for Typical Sensor Configuration

70

10

0

0.2

0.4

0.6

0.8

1.0

1.2

0

4

8

Z
"Ifn

12

16

20

-0.7



11d W Ittilj I u II[ Eve IgV t U.I (UŽ JU I sOe let:, fc volut.i onl Irorrli (d EIUler sl'ars , Hleu

tIe signal *to noise ratio must be at least 13 for the third magnitude star.

The situation is much better if we can set the limiting magnitude at a

brighter level, say magnitude 2.5 or 2. This is because as the limiting

magnitude is reduced, the number of stars in a given interval AM above the

limiting magnitude also decreases. It is apparent from the figure that if

we require a limiting magnitude larger than two (which we do for the worst

case conditions), then this structured background noise imposes a more

severe requirement on the signal to noise ratio than the false alarm rate

due to random noise.
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PRECEDING PAGE BLANK NOT FTLMMI

SEC'ITON 9

STRAY IIGHT - SOURCES, SYMPTCMS, AND CURES

Previous sections have discussed several sources of system noise which

limit sensitivity and interfere with the proper operation of star scanners.

Stray light is a source of interference that differs in many ways from the

other noise sources, and has proven to be a problem in many star sensor

systems. Rejection of stray light is a major design problem, and because

of its importance, this entire section is devoted to it.

Many aspects of the stray light problem are covered in this section,

beginning with the sources of stray light, the mechanisms by which it inter-

i'eres with proper sensor operation, and the total stray light rejection re-

quired in -the sensor. Rejection of stray light is accomplished by a combi-

nation of' the baffle, the optical system, the configuration of the focal

plane, and the information processing performed on the detector signals.

Important parameters associated with each of these components are presented,

along with the principles and criteria important for sensor design. Baffle

design is a complex problem, and a number of designs have been developed

or proposed by various groups in the past for similar applications. The

study team reviewed a number of potential designs, have selected one as

being most promising for this application, and have developed a set of

parameter curves for this particular design.

The stray light rejection problem is so complex that accurate calcula-

tion for real baffles and optical systems is extremely difficult. The only

way to have confidence in the overall rejection capability of the sensor

system is to measure the rejection on the actual system or components of it.

Unfortunately, current measurement techniques are not adequate to measure the

large rejections required, and we recommend two techniques which can be

developed into measurement systems with sufficient capability to measure the

rejections required for this star scanner application.
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OUnRC S OF ST.MAY LT IT

All stray light comes from the sun, either directly, or after reflection

from objects such as planets, the moon, or spacecraft appendages. The sun

itself is the most intense of all the stray light sources; on the stellar

magnitude scale it is a source of approximately -26.8 visual magnitude, which

is nearly 10
2
brighter than a third magnitude star, about the dimmest star

the sensor must detect. At Venus, the intensity of the sun is about double

what it is at the earth.

Sunlight reflected from planets or spacecraft appendages can vary widely

in total brightness depending on the geometrical factors involved, but will

always be less intense than light from the sun directly. The sun, however,

is a small area source which subtends an angle of only about 30 minutes at

the earth, while a planet can subtend a very large angle, approaching a full

hemisphere, when the spacecraft is close to the planet. The large subtended

angle can make baffling for planetary albedo nearly as difficult as baffl-

ing for the sun, and in some cases can restrict operation over a larger total

solid angle.

Reflection from spacecraft appendages is generally a lesser problem

than direct sun illumination or planetary albedo, because we have control

over the placement of the sensor and the appendages. The best arrangement

is to position the sensor such that all structure is behind the plane which

defines the baffle opening; then there is no way for light reflected from

the spacecraft to enter the baffle except by diffraction at the edge. Ac-

tually, as long as all structure is placed outside the sun rejection angle

of the baffle, there should be no problem. The baffle should have a sun

rejection angle of 35 degrees or so, and it should not be difficult to place

the sensor or the spacecraft such that this requirement is met. If possible,

the surfaces which can reflect light into the baffle interior should be

diffuse reflectors (to eliminate specular flashes of light) and have low

reflectivity.

Another class of reflectors which must be treated differently is particles

which may "f'loat" near the spacecraft. These could be particles resulting

from thruster firing, or coming from the surfaces of the spacecraft, perhaps

knocked off' by micrometerorite impacts, or from other sources. When these
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particles are illuminated by the sun (as they will be except when they are in

the shadow of the vehicle) they will appear to a sensor viewing them as a point

source of light. M'uch particles may be distinguished from true stars by

their motion when viewed on successive revolutions, by their intensity if it is

significantly higher than star targets, and by their failure to fit into the

pattern of the other stars viewed.

STRAY LIGHT REJECTION REQUIRED

Stray light can interfere with proper operation of the star scanner in

basically two ways; it can increase the random noise, and it can appear as

a signal. The random noise is shot noise due to the current generated in the

detector. If the total current is increased significantly above existing

currents such as background generated current or dark current, the total noise

increases and the sensor is degraded. Thus the baffle and optical system must

keep the light intensity at the detector focal plane low enough so that the

current; generated by the light is less than these 'other currents.

The second mechanism by which stray light can interfere with sensor

operation is by generating spurious signals. Since the vehicle and sensor

are spinning, the angles between the stray light source and the sensor are

constantly changing with time, so the light at the focal plane and thus the

detector current will be modulated by this motion. The waveform of this

modulation depends on the source geometry, and the detailed characteristics

of the baffle and optical system, but with a small area source (such as the.

sun) and some simplifying assumptions about the sensor baffle characteristics,

the light at the focal plane will vary approximately as a half wave recti-

fied cosine wave. The intensity will be a maximum when the sensor is oriented

closest to the sun, and will fall to zero with a rotation of 90 degrees. It

will remain zero for the next half revolution, then rise to maximum during

the last 90 degrees of the revolution. The assumptions for this calculation

are that the baffle opening is circular, and that a constant fraction of the

light striking the interior baffle surfaces reaches the focal plane. A

real baffle will undoubtedly have a more complex stray light waveform, but

the cosine pulse is probably a reasonable approximation.
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Figure 9 - 1 shows the power spectrum of a cosine stray light pulse and

for comparison a signal pulse of equal amplitude from a 0.5 degree wide detector.

The spin speed is 12 RPM. Power is plotted on a relative decibel scale with

zero taken as the level of the fundamental component of the stray light pulse

which occurs at the spin frequency of 0.2 Hertz. For equal peak amplitudes, the

stray light pulse contains more power because the duration is larger, and its

frequency spectrum is larger at low frequencies. The stray light spectrum de-

creases at higher frequencies and falls below the power spectrum of the signal

pulse at about 4 Hertz. A larger amplitude stray light pulse dominates to

higher frequencies, of course. Thus, to eliminate the interfering stray light

pulse, high pass filtering must be employed with the cutoff frequency dependent

upon the relative amplitudes of the signal and stray light. It is desirable to

utilize a filter with a cutoff rate exceeding the 40 db/decade fall-off rate of

the straylight; hence at least a 3 pole design should be considered.

Because high pass filtering eliminates some signal energy as well as

noise or interference energy, a method of stray light elimination other than

by filtering might be considered, namely cancellation. Implementation of

this requires knowledge of the amplitude, waveform, and time of occurrence

of the stray light pulse and then subtracting this wave from the total

signal. This is difficult to accomplish even if the stray light signal does

not vary, but in this case it will surely vary with sun aspect angle, and

other sources such as planetary albedo will enter, so it becomes much too

complicated an approach for this application.

Stray light reaching the sensor focal plane will generally be more or

less uniformly distributed over the sensitive detector area, due to the

nature of the scattering and reflection mechanisms involved in the process.

This means that the currents generated by the stray light will be propor-

tional to the detector area. A solid state sensor which employs a number

of detectors to make up the full field of view, enjoys a distinct advantage

due to reduced detector area over a single channel sensor such as one

employing a photomultiplier tube. A second advantage of the solid state

array is that a stray light signal will affect all channels at once and thus
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can more easily be distinguished from a true star crossing which will affect

only one detector at a time.

The total stray light rejection required will thus depend on the details

of sensor construction, since it depends on the existing noise sources (back-

ground or dark noise) and the sensitive areas of the detectors. Anticipating

t;he preliminary sensor designs, we will assume, for purposes of calculating the

stray light rejection required, two different sensors. One employs an S-20

phot;onultiplier detector and a reticle pattern consisting of two slits, each

10 degrees in elevation and 0.3 degrees wide. The optical system is f/2

with a five centimeter diameter aperture. The second sensor employs an

array of eight silicon diode detectors, each 2.5 degrees x 0.5 degrees, with

a 3.2 centimeter, f/l optical system.

Rejection can be defined in a number of ways, and we have adopted two

definitions useful for this application which will be referred to as

definitions (A) and (B).

(A) Rejectibn (A) is the ratio of the light striking the detector

when the stray light source is in the sensor field of view (imaged

on the detector), to the light striking the detector when the stray

light source is at a given angle or position outside the sensor field

of view.

(B) Rejection (B) is the ratio of the light intensity from an out-of-

'ield source which strikes the sensor and baffle, to the light

int-lensi ty on the sensor focal plane.

Def'init;ion (A) is only applicable to the entire sensor, and depends in

detail on the detector or reticle configuration and, because the source is

imaged, depends or the geometry of the source. Definition (B) can be ex-

tended to components of the sensor, such as the baffle itself, by substitut-

ing the light intensity at the output of the component in place of the

intensity at the focal plane.. Under both definitions, the rejection re-

quired depends on the currents produced in the detector. Rejection must

be such that currents from stray light do not exceed the total detector
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current in the absence of' stray light. The sun is the brightest source of

stray light so we will calculate the rejection required for this source.

Since we are interested mainly in currents produced in the detector it is

convenient to calculate the sensor response to a known star of the same

spectral class as the sun, and then make appropriate intensity conversion.

The star a Centaurus is such a star, being of class G2V, just as the sun,

and having a visual magnitude m of -0.28. The sun has a visual magnitude

of -26.8, so the intensity difference is 100 4 (26.8 - 0.28)_ 1016 =

4 x 1010. Reference P2 lists the response of the silicon detector and

S-20 photocathodes to 0a Centaurus as 0.758 x 10-12 amps/cm2 and 0.709 x

10-1 3 amps/cm
2
respectively. These values are for no atmospheric attenua-

tion, 100% telescope transmission, and are per square centimeter of

telescope aperture. Similar values for the sun (if the detectors were

linear) would be larger by the factor 4 x 10 . Based on these values,

we can now calculate the required off axis rejection required for the

sensors for both definitions (A) and (B).

STRAY LIGHT REJECTION REQUIRED FOR THE PHOTOMULTIPLTIER SENSOR

The photomultiplier sensor is limited by background radiation which,

on the average, is equivalent to 100 tenth magnitude stars per square

degree. The area of the reticle slit is 2 x 0.3° x 10 -= 6 square degrees,

so the total background on the detector is equivalent to 600 tenth magni-

tude stars. The response of the S-20 detector to a zero magnitude AO star

is 0.827 x 10-13 amps/cm2 . The background and sun radiation enter through

the sane optical system, so the aperture size and optical transmission do

not a'ff'ect the ratio.

Rejection (Definition A)

The reticle slit is narrower than the sun's image, so only about 80%

of the sun's light will fall on the detector when the sun is imaged on it.
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1 (P.M.) = current from sun
current from 600 tenth mag stars

= (4 x o10)(c.709 x 0l
- 1 3 amps/cm 2)0.8)

600)(10- 4)(0.827 x 10-13 amps/cm2

R(P.M.) 4.57 x 1011I AP-- 

Rejection (Definition B)

The situation is different for definition (B),

the light per unit area, and hence current per unit

system is i'/2. The background current per detector

as follows:

I

AD

since we must calculate

area. The optical

area can be calculated

(I/Ao ) Ao

AD

= rr/4 D 2

(fl)20 where n is
of view

the solid angle detector field

= (I/A o ) T D/4 D (Io)

n (fl)2 n~4 (f/~)
The solid angle in this case is 6 square degrees

= 1.836 x 10
-
3 steradian

,o the rejection required (definition B) is

I(]?.M.) = current from sun/collector area
background current/detector area

= (4 x 1010) 10.709 x 10-1 3amps/cm2)

,r(600 x 10= )(0.827 x 10-13 amps/cm2)

4 (1.836 x 10-3)(2)2

I (P.M.) = 5.34 x 109

Note that this definition results in a required rejection nearly two

orders of magnitude smaller than that required using definition (A).
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STRAY LIGHT REJECTION REQUIRED FOR THE SILICON DIODE DETECTOR SENSOR

The sensor employing silicon diode detectors is not limited by background

radiation as is the photomultiplier detector, but is limited rather by the dark

current of the detector. For the f/l, 3.2 cm diameter optical system, the 2.5

degree by 0.5 degree detector will have a dark current of about 4 picoamperes.

This dark current is typical of the low dark current detectors as developed by

Fairchild and Lockheed Microelectronics. Again we calculate the currents

generated by the sun by correcting the a Centaurus values by 4 x 101 .

Rejection (Definition A)

RA(Si) = current from sun
dark current

= n + Ao(4 x o10 )(I/A) a Cent.

ID

= (o.8)(8)(4 x 101 )(o.785 x 10-12 amps/cm2 )

-x 102

RA(Si) - 4.85 x 1010°

The resection required by definition A, for the silicon sensor is just

about a factor of 10 less than that required by the photomultiplier sensor.

Rejection (Definition B)

As in the photomultiplier sensor, we are interested in the currents per

unit. area. The detector area is

AD = (i)2n

where i
i

= focal length = 3.2 cm

and 2 = solid angle f.o.v of detector = 2.5 x 0.5 square
degrees - 3.82 x 10-4 steradians

The rejection required is:

RB (si) = sun generated current/collector area
dark current/detector area

= (4 x 101) (0.758 x 1012 amps/cm2 )

4 x 10 1 2 amps/(3.2 cm)2 x 3.83 x 10-
4 ster.
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Using definition (B), the off axis rejection required by the silicon

sensor is less than that required by the photomultiplier sensor by a factor

of about 180. The two systems differed by less than a factor of ten when

compared using definition (A). We now must examine the question: Why is

there this difference and which comparison is most valid?

The difference between the definitions are somewhat subtle and center

about the way the noise sources scale with detector area and the effects

of imaging of the sun under definition (A). Because we image the sun in

definition (A), as long as the detector is larger than the sun image, the

numerator of the ratio is constant. The denominator, for both sensor cases,

increases as the detector field of view increases, so this definition leads

to a smaller rejection for a larger detector. This occurs because the stray

light contribution must be less than the existing noise sources, and these

noise sources increase with area. This definition is somewhat unrealistic,

however, since for a given sensor baffle, optical system, and sun position,

the stray light will be distributed over the focal plane, so the contribu-

tion of the noise source will scale with area in the same way as the other

noise sources. If the two sensors are compared on an equal field of view

basis, we must correct by the ratio of the field of view = 60/1.250 = 4.8,

resulting in the silicon sensor requiring less rejection by a factor of 45.

Definition (B) is more realistic in the sense that it recognizes that

the stray light is diffusely distributed in the focal plane and thus the

detector area does not influence the required rejection. The f/number

does enter this calculation however, and if we compare the two systems on

the basis of equal f/number, we again find the silicon detector sensor re-

quires less rejection by a factor of 45. Thus we have excellent agreement

between the two rejection definitions, if we are careful to make our

comparison on the basis of equal sensor fields of view (definition A) or

equal optical f/numbers (definition B).

We conclude that definition (B) offers the most direct comparison of

the required stray light rejection, primarily because definition (A) results

in the unrealistic situation that the larger the detector the less stray

light rejection is required. Two points are clear in any case. First, the
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silicon detector sensor is significantly superior as far as its susceptibility

to stray light, and second, one must carefully state the definition of stray

light rejection since the required values can vary widely depending on

definition.

BAFFLE PRINCIPLES

The baffle is the first, and in some respects the most important, of the

sensor components which reject off-axis radiation. In this application, the

baffle will be called upon to perform the lion's share of the job. Its

function can be stated simply: Keep off axis radiation from entering the

sensor optical system.

The baffle relies on geometric shielding, so it is impossible to prevent

light sources at very small angles from the field of view from illuminating

at least part of the optical system. The optical system itself must reject

such light. The function of the baffle is rather to shield the optical

system from bright sources at larger angles outside the field of view. In

this application, a reasonable requirement might be to reject sunlight at

argles exceeding 30 or 35 degrees from the center of the field of view.

If perfectly black surface coating materials were available, baffle

design would be trivial. A simple tube extending from around the entrance

aperture of the optical system, coated with such a perfect absorber, would

perfectly shield. the optical system for sources outside the rejection angle.

leflecltions would be eliminated, and the only mechanism whereby light;

could enter is by diffraction. For real baffles coated with real materials

operating with visible light, reflection easily dominates diffraction, which

can then be neglected for most purposes.

Baffle design is a very complex problem involving a large number of

variables, and consequently there is no one design which is universally

accepted as best for most applications. There are several design principles,

however, which all successful baffles observe, and these are as follows:

(1) All baffle structure must be placed outside the sensor field of

view. This means that any light reflected or diffracted from these baffle

surfaces will not be imaged by the optical system directly on the detector.
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(2) The surface area of the baffle which can be directly illuminated

and which also views the optical entrance aperture should be minimized.

This generally means that baffle rings or other structures be employed so

that only the edges of such structures can be illuminated and view the

lens. Such edges are usually sharpened to minimize their area. In this

structure, most light rays undergo more reflections and thus greater attenu-

ation before reaching the optical system.

(3) If the rejection required is greater than is practical with one

baffle, a second baffle stage can be added which shields the first stage.

In such a configuration the area illuminated which views the optical system

(item 2) can be made zero.

(4) Depending on design details, the surfaces at the baffle should

be either:

(a) Black diffusely reflecting surfaces

(b) Black specular reflecting surfaces

(c) Highly reflecting and accurately polished (mirror)

surfaces.

There are a number of "schools of thought" on baffle design and the surface

coatings. The black surfaces are intended to absorb the radiation and the

highly reflective surfaces are used in designs where the light is to be

reflected back out the entrance. The specular designs are sensitive to

small surface irregularities and deformations, particularly the highly

reflective type, and are much more difficult and expensive to produce. The

diffuse surfaces can be made the most absorbtive (blackest), and are the

easiest to manufacture. Primarily for these reasons, we favor the black

dii'f'use surface coatings for all internal baffle surfaces, while external

surfaces can be finished as required for thermal or other reasons.

BAFFLE DESIGNS REVIEWED

The study team reviewed a number of baffle designs which have been used

in various applications or which have been proposed. These included the

single stage cone, the two stage cone, the truncated two stage cone, and

modifications of these. Also considered were the specular reflection
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ellipsoid, a cavity type baffle, the CDC hybrid baffle, and a multiple knife

edge baffle. These designs are described in reference R 22 and table 9-1,

which compares these designs under several criteria, is taken from this source.

The criteria by which these designs are judged are these:

(a) Ease of fabrication

(b) Past performance or experience

(c) Number of' edges

(d) Volume and dimensional efficiency

(e) Sensitivity to deformation and surface defects

(f) Sensitivity to diffraction

(g) Is the illuminated first edge visible directly?

The simplest form of baffle is the simple cone. This configuration

allows the aperture to view an illuminated surface, the illuminated portion

varying with angle to the interferring source. It is easily fabricated but

offers only limited rejection performance.

The two stage cone (dual baffle) provides an outer baffle to prevent

illumination of viewed surfaces for sources outside a particular angle for

the optical axis. It, too, is fairly easily fabricated and offers much

better rejection than a single stage baffle.

The truncated 'two stage cone acts in a similar manner and reduces the

area 'of illumination on the outer baffle surface but at the expense of

permitting an illuminated baffle edge to be viewed. The total volume and

length of the baffle are reduced by the truncation, but the fact that the

first edge is now viewed by the optics negates one of the primary reasons

for t-Ihe second baffle stage.

The specular reflection ellipsoid baffle is designed to reflect light

back out the entrance rather than absorbing it within the baffle, but it

is difficult to fabricate and is very sensitive to surface defects. Here,

too, the illuminated first edge views the optics.

The cavity baffle employs the principle of creating "light traps"

for light rays outside of the field of view. Black specular surfaces

might be employed here. The design gets very large for highly absorbtive

traps.
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The CDC Hybrid baffle employs an outer baffle similar to the outer

stage of the two stage cone, and employs a cavity or "light trap" arrangemenL

of baffle edges at the inner stage. This design can be considered a type of'

two stage cone baffle.

The Multiple Knife Edge baffle is a variation of the Truncated Two

Stage Cone employing "light traps" in both the outer and inner baffle.

The edges in such a design must be carefully ground and polished to razor

sharpness.

RECOMMENDED BAFFLE DESIGN

The two stage cone baffle achieves the overall highest marks in the

comparison of' Table 9-1. Itis fairly easy to fabricate, uses a minimum

numiber of' edges, has good volume and dimensional efficiency, is quite

insensitive to surface defects and is insensitive to diffraction. The

illuminated first edge is not viewed by the optical system, in fact, for

source angles outside the rejection angles, no illuminated surface or edge

can reflect or diffract directly into the optical system. This two stage

cone configuration is the basic design recommended.

Actually, the simple cone surface can be improved upon significantly

at some additional complexity in fabrication, by replacing the smooth cone

surface with a recessed surface and baffle rings. Such a design is shown

in Figure 9-2, where the original cones are now represented by the dashed

lines. These surfaces are now defined by the optical entrance aperture,

and the two major baffle edges. All other edges and surfaces are recessed

I,:ack F'roml these cones, with baffle rings placed to reflect light several

Limes before it can reach the optical aperture.

Parametric Design Curves for Two Stage Baffle

The dimensions of the cones which define the two stage baffle can be

determined for any specific case in a straight forward manner. The inner

baffle cone must flare out from the optical system aperture at the field

of view-angle so as to just stay outside the field of view. The second

stage cone begins at the end of the first stage cone and flares out at a

steeper angle as shown in figure 9-2. The only remaining question is
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where does the first cone end and the second cone begins

The baffle rejection angle 8r' is the angle outside of which a source

can only illuminate the outer baffle directly; the inner baffle is completely

shielded geometrically. The rejection angle is a function of the field of

view angle, the lens diameter, and the lengths of the inner and outer cones.

We have developed a computer program which calculates the relative lengths of

the inner and outer baffles such as to minimize the rejection angle, and

plots a series of parametric curves.

If' we normalize all dimensions to the aperture diameter (i.e., for D = 1)

then the length L of' the inner baffle which minimizes 8 ' is given by
r

L - -1 + (1 + 2L' tan ( FOV/2))1/2 (9-1)
2 tan (e1POV/2)

A typical set of parameter curves as generated by this computer program

is shown in Figure 9-3. This is for a 3 centimeter diameter aperture and a

total sensor field of view of 12 degrees (6 degree half angle).

For a given rejection angle, or the maximum length or width, the other

baffle parameters can be determined from the curves in the figure. For

example, if the required rejection angle 8r ' is 35 degrees, we find that

the overall length of the baffle L' is 27.2 centimeters. The width of

the outer baffle (wt) is 19 centimeters for the length of 27.2 centimeters,

and the imnner baffle is 5.12 centimeters (w/w' times 19 centimeters). The

lenhl,l of' Lhe inner baffle is 10.1 centimet;ers (from L/L' times 27.2

ccnirtietcrs), and no part of' the lens will be directly illuminated for

atngles outside '22 degrees (from the 0 curve).r
If' the baffle length could be as long as 40 centimeters,the outer

baiTle width (w') would be 23.2 centimeters and the rejection angle e '

decreases to 29 degrees.

A similar set of curves is shown in Figure 9-4, where the field of' view

is now 15 degrees and all dimensions have been normalized to the diameter

of the optical aperture.
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Figure 9-5 shows another set of parameter curves for field of view

angles of 2, 4, 8, 16 and 32 degrees. It can be seen that as the field

of view is increased, the rejection angle increases markedly for a given

total baffle length, or for a given rejection angle the length must in-

crease. For example, for a rejection angle of 35 degrees, a normalized

length of 6.1 is required if the field of view is 2 degrees, but the length

must be 7.8 for an 8 degree field of view, and it must be longer than 20

for the 32 degree sensor. Even more dramatic is the width increase with

field of view, which is shown in the dashed curves. The L/L' and w/w'

radios are shown at the bottom of the figure. Table 9-2 shows some of

these values for various rejection angles taken from Figure 9-5.

STRAY LIGHT REJECTION OF TWO STAGE BAFFLE

How good is this two stage baffle we have described, and is it good

enough to meet the required rejection criteria presented earlier? Un-

fortunately it is impossible to provide an exact numerical answer to the

first part of the question, because the geometry we propose with the

recessed walls and baffle rings makes precise calculations very difficult.

We can show, however, for realistic coating materials such as 3M Black

Velvet paint, and some simplifying assumptions about the geometry, that

the two stage baffle when combined with the off axis rejection of the lens

will meet the stated criteria.

]'or purposes of' calculation, we assume the simplest form of two

stage baffle, t-I;hat is, the simple cone surfaces themselves. Since we are

ulsing black surfaces which only reflect a few percent of the light incident

upon them, we only consider light which is reflected two times. Light that

is reflected more often will be attenuated further and will add only a

negligible amount to the total light at the focal plane.
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The rejection definition we use here is definition (B) described earlier.

For a given intensity incident upon the baffle from the sun, we calculate

the intensity at the aperture of the optical system.

We have made this calculation for total fields of view of 4, 8, 10, and

16 degrees, all with a normalized length, L'/D, of 11. For each baffle we

have calculated two cases: for light incident at the rejection angle (which

is different for each baffle), and for light incident at 45 degrees from

the optical axis. The rejections for these baffles are tabulated in

Table 9-3, along with some of the baffle parameters. These values assume

a total diffuse reflection of 5 percent for the baffle coating materials,

which is typical of a good material such as 3M Black Velvet. These rejec-

tions are proportional to the square of the reflectance (since we consider

only two reflections) so these rejection ratios can be corrected for other

total reflectance values. For instance, if the coating material has a

reflectance of 6 percent, these values would be multiplied by (5/6)2 = 0.695.

SENSOR OPTICAL SYSTEM

The optical system is the second part of the sensor which rejects stray

light. Since all surfaces of the baffle are outside the sensor field of

view, all light reaching the lens after reflection or diffraction from the

baffle is outside the field of view. A perfect optical system images all

this light off the edge of the detector or reticle slit. The optical cavity

must be carefully designed to prevent such light from reaching the detector

after further reflection. Perfect systems do not exist, of course, and in

real systems there are a number of ways in which small amounts of this out

of field light will be directed toward the detector.

There are basically two types of optical systems, reflective systems

which use mirrors, and refractive systems using lenses. In addition, there

are combinations such as the Bowers and Schmidt systems which combine

refractive and reflective elements. Reflective systems are all .'folded"

systems which are more difficult to baffle than in-line refractive systems,
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particularly when small f/numbers and wide fields of view are required.

Paths can exist in folded optical systems whereby light can reach the de-

tector by circumventing the optical elements. Reflective systems, also,

often have "spiders" or other support structures in the field of view which

can reflect off axis light and greatly degrade the stray light rejection of'

the optical system.

Refractive systems, although they have their own set of problems, do

not suffer from these difficulties which are present in mirror systems,

and generally promise superior performance for the f/numbers and fields of

view required in this star scanner application. Most instruments covered

in the technology survey use refractive optical systems, and this is the

design approach recommended. The following discussion deals specifically

with stray light mechanisms in refractive systems, but many of the comments

can be applied to the reflective systems as well.

Stray Light Mechanisms in Optical Systems

There are a number of mechanisms within any real optical system which

degrades it from the ideal system so that some out of field light reaches

the detector. These mechanisms fall into two basic categories: scatter-

ing of various types, and multiple internal reflection. The star scanner

must minimize -these effects to maximize the rejection of stray light.

Scattering is a general term describing a number of' related physical

phenomena which can occur when waves (such as light waves) interact

with other structures (in this case, the elements of the optical system)

so that some of the energy exits at angles other than would be predicted

by the reflection or refraction laws. Scattering is usually the result

oi' non-uniformities in the materials, and can be associated with both the

surfaces and bulk of the optical materials. The surface scattering is

due to surface defects (e.g., scratches), imperfections in the coating

materials, and contamination. The bulk scattering can be due to macro-

scopic defects such as bubbles, or microscopic defects such as color centers.

Scattering measurements performed on simple optical systems at Perkin-

Elmer Corporation (Reference 0 1 ) have shown that careful selection of'
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materials, surface polishing, and cleaning can lead to a total difl'use
. 4

scattering of about 10 of the incident radiation. This is probably

a practical minimum scattering which one could expect to achieve in an

optical system for the Pioneer Venus star scanner.

The second general mechanism contributing to the stray light, internal

reflection, depends on the quality of anti-reflection coatings and the num-

ber of surfaces in the system. If we consider a series of flat plates,

and assume that the reflection at each interface is small, it is easy to

show that the total light which is multiply internally reflected and which

leaves the stack in the same direction it enters, is given approximately

by

I 0 p'- (1+2+... + N-l)

where I is the incident intensity

p is the reflectivity per surface

N is the number of surfaces.

Thus the total contribution due to internal reflection increases as an

arithmetic progression on the number of surfaces.

Real optical systems, of course, do not consist only of flat surfaces

stacked together, so the above relation is significantly modified, because

many rays are directed out the sides of the system. Curved surfaces can

focus and concentrate the stray radiation also, and this is the real danger

of Ili-lILiple inl;eral reflection. Any optical design must be carefully

examined Lo deiellrnine i' t;here. are a.iy internal reflection paths which could

J'ocus and image offl' axis light onto the detector. The edges of the lenses

must be carefully treated also to absorb light reaching them and prevent

reflection back into the lens.

Optical System Design Criteria

These scattering and reflection mechanisms which occur in optical systems

lead to several criteria which can be used in designing and comparing

potential optical systems. These criteria are listed below.
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(1) Materials should be selected for low scattering characteristics.

Glasses and other optical materials vary considerably in their content of

bubbles and microscopic defects, as well as their ability to take a good

polish. The best optical grade fused quartz is one of the best materials

in this regard.

(2) Surfaces should be "superpolished" by any of the commercial tech-

niques which have been developed in the last few years. Most of these

methods are similar and based on theexperimental work of A. F. Bennett and

J. M. Bennett at the Naval Weapons Center, China Lake. (Reference P 20

presents some theoretical scattering curves for various surface finishes.)

The polished surfaces should be carefully AR coated.

(3) Since scattering and internal reflection depend on the number of

surfaces and total path length through the optical materials, the number

of such elements should be minimized. This means that in this star scanner

application where we have shown that we have more than sufficient accuracy

with detectors as wide as 0.5 degrees, we should allow a sizable blue to

simplify the optical system.

(4) The edges of the lenses should be coated with a material designed

to absorb rather than reflect light reaching these surfaces.. One such

material is "Luxorb", developed by the Northrup Corporation for star sensor

applications, and comes in several formulations to match the indices of

refraction of various glasses.

(5) Contamination on the surface is one scattering mechanism which we

can't control after the vehicle is launched. A safety factor should be

included by providing the system with an "over designed" baffle to allow

some contamination to settle on the lens before compromising sensor operation

due to stray light. Fortunately, the two stage baffle appears to have

sufficient off axis rejection for the sample cases studied to provide this

safety margin.

BAFFLE MEASUREMENT TECHNIQUES

Because the off axis rejection capabilities of the baffle and optical

system depend on so many parameters and involve complicated geometry, the

only way to have confidence in the performance of sensor is to test it.
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Unfortunately, conventional baffle measurement techniques are not sufficiently

sensitive to measure the very high rejection ratios required in this applica-

tion, so improvements must be made in the measurement capability.

Baffle measurements are normally performed in a room with a bright source

of collimated light such as a laser or an arc lamp. A typical measurement

set-up is indicated schematically in Figure 9-6. The light beam is expanded

so -that it uniformly illuminates the entrance aperture of the sensor baffle.

The angle between the sensor and the light source is varied by either rotating

the sensor or moving the light source in an arc about the sensor.

There are two mechanisms which limit the rejection ratios which can be

measured by such a technique. First is scattering due to the air and dust

particles in the air. This scatters light directly into the field of view

of the otpical system, which focuses it on the detector. Performing this

measurement in a clean room can reduce the dust scattering, but, for visible

light, Rayleigh scattering in the air can still be significant. Such a

limitation can be removed completely, of course, by performing the measure-

ments in a vacuumL chamber.

The second limiting mechanism is backscatter from the wall or other

structure which is in the. sensor field of view. Some of the light reach-

ing this. surface will be reflected into the sensor field of view. Of

course, this surface should be made as low reflectance as possible, such

as a black honeycomb or other cavity type surface, and placed as far back as

possible. If the back wall has a total reflectance of 1 per cent, and is

located 5 meters from the sensor which has a 32 centimeter diameter baffle

coated with a 5 percent reflectance material, then the maximum rejection

that can be measured with such an arrangement is less than 107 (definition B).

This calculation considers reflection from the baffle interior only, ignor-

ing reflections from other walls and surfaces which will degrade the capabilities

of a real measurement system below this level. Depending on the sensor type

and construction details, the measurement system must be capable of measuring

rejection ratios up to several orders of magnitude larger than this calculated

measurement capability.
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Figure 9-6 Conventional Baffle Measurement Technique
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Measurements at LMSC in filtered air have shown that the limiting

rejection ratio that can be measured without undue effort is about 107

(definition A), and it is considered unlikely that improvements could be

made to this basic method that would reduce air and dust scattering and wall

reflections to the levels required for this program. Other methods must be

employed which do not have these limitations, and we suggest two possible

techniques which could be developed to provide the required measurement

capabilities.

Potential Baffle Measurement Techniques

The first technique is proprietary to the Lockheed Missiles and Space

Company since it was conceived long before the initiation of this study. It

involves discrimination against reflection from the back will which the sensor

views by the differences in the time required for the light to traverse the
10

various path lengths. Light travels at a speed of about 3 x 10 centimeters

per second, or as a rule of thumb, about one foot per nanosecond. Reflection

from a wall x feet away would return to the sensor 2x nanoseconds after the

direct beam. The method requires light pulses which are shorter in duration

than this delay time, such as can be produced in lasers by several techniques.

A very fast detector, such as a specially designed photomultiplier, will be

required in place of the regular detector used in the sensor. The entire

measurement must be performed in a vacuum chamber to eliminate air and dust

scattering which is not discriminated against by the technique.

The second technique involves breaking the total measurement into two

measurements, one on the baffle assembly itself, and one on the optical system.

The attenuations achieved with each system separately will be measurable in

air without special precautions, but the measurements must include angular

as well as total intensity information and the results of the two measurements

then combined by numerical integration in a computer. The measurement on the

baffle, for example, will involve mounting the baffle in a light tight box

with an auxiliary sensor which is movable behind the baffle. All light

reaching the sensor must come through the baffle, so the angular intensity
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distribution can be "mapped" by moving the sensor about to view the baffle

exit aperture at various angles. A similar angular measurement would then be

performed on the unshielded optical system to produce a "map" of its sensi-

tivity to out of field light. The results of the two measurements would then

be combined to obtain the total sensor rejection.

The first technique has the advantage of being more direct in that it

measures the rejection of the complete sensor, but it requires a complex

laser and electronic system and a good size vacuum chamber with mechanisms

to move the source and/or sensor during the test. The second technique,

although less direct, can be performed in air without such an elaborate

set-up. This could also be used as a convenient tool for baffle and optical

system design because it reveals more information about the detailed

characteristics of each component.
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SECTION 10

PRELIMINARY SENSOR AND SYSTEM DESIGN

Based on the attitude determination requirements, and the stellar, de-

tector, baffle, and optical system characteristics, a preliminary design

concept has been developed which meets the requirements. We are actually

taking two approaches, since two separate types of sensor systems can per-

form this function. First is what we call the "traditional" design approach,

which consists of a photomultiplier tube detector with a "V-slit" reticle.

Such an instrument would be similar to instruments now in service, although

the baffling, the optical system, and the electronics are different for

this design. The second design approach uses an array of silicon detectors,

and is a significant departure from the traditional sensor, but offers a

number of significant advantages such as potentially smaller size, lower

susceptibility to stray light interference, and greatly increased reliability.

This section describes the preliminary design requirements, the basic

design parameters for the two sensor approaches, and a baseline approach to

the information processing.

PRELIMINARY DESIGN REQUIREMENTS

To meet the system attitude determination requirements as stated in Sec-

tion 4, a set of sensor system design requirements has been developed. The

next section discusses how the mission requirements and consequently the

sensor and system requirements might be relaxed to simplify the sensor or

realize other advantages. The sensor and attitude determination system

requirements which determine the preliminary design are these:

(1) Two sensors must be employed, and oriented on the spacecraft in such

positions and angles that at least one of them will be operational for all

possible attitudes of the vehicle. One should be oriented pointing up

toward one spin axis, and the other pointing down toward the other end of

the spin axis. Since it is not desirable to point too close to the spin

axis (elevation field of view and optical resolution must increase), a

good compromise position is to orient the sensors at aspect angles of 45

and 135 degrees.
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(2) Both sensors should be operational in the normal cruise mode. This

provides complete redundancy for this mode which is a reference position.

If need be, due to failure of one of the sensors, other attitudes can be

obtained by "open loop" control from this reference position even if the

new attitude is such that the remaining sensor is not operational because

of sun angle. To provide a band of reasonable width about the cruise

position where both sensors are operational, the baffle rejection angle must

be smaller than the angle from the sensor to the sun in this mode. A

baffle rejection angle of 30 to 35 degrees will provide an operational band

of + 10 to 15 degrees when the sensors are mounted at aspect angles of 45

and 135 degrees.

(3) A sun aspect angle sensor should be included in the attitude determi-

nation system. The sun can be used as a well identified star-which is loca-

ted in both aspect and azimuth, reducing the requirements on the star sensor.

Knowing sun position in two axes greatly simplifies star identification and

the attitude may be determined by observing only one (identified) star.

There is a limit to how much we can relax the star sensor requirements because

we must avoid a critical failure path through the sun aspect sensor, so the

star scanner must be able to determine attitude independently, without rely-

ing on sun aspect angle information, for most vehicle attitudes.

This still represents a significant reduction in star scanner performance

requirements, because the system can be designed for star availability

closer to average rather than the worst case star condition which is much

worse than average. The sun aspect sensor also provides considerable

redundancy.

The sun aspect sensor can be a small, light weight, simple instrument.

For instance, a pinhole camera concept could be used because of the high

light intensity available, and a position sensing silicon photodiode using

the lateral photoeffect might be a convenient detector. We did not examine

the sun aspect angle sensor further since it is outside the scope of the

study.

.io6
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(4) For all attitudes except those where the sun appears within the

baffle rejection angle, and at normal cruise spin speed (assumed to be

12 RPM), each sensor must provide sufficient information so that the

vehicle attitude can be determined when the sun aspect and elevation are

known. If the sensor scans 6% of the sky, for example, it must be able to

detect a third magnitude star (2.5 magnitude silicon) since under the worst

case conditions only one third magnitude or brighter star appears in the

scanned field.

(5) The same must be true at maximum spin speed (120 RPM), except we

require that each sensor only provide attitude information for 75% of all

attitudes not compromised by the sun. Operation at all intermediate spin

speeds and as low as 5 RPM is also required, which means that the electronic

bandwidth must track the spin speed over this range. Although the signal

to noise ratios at 120 RPM are lower than those at 12 RPM by more than a

factor of three, the worst case star distribution which dictated the design

for the cruise RPM is so much worse than average, that 75% of the time at

least one star brighter than second magnitude will be visible. This means

that if requirement (4) above is satisfied, and the filters track the spin

speed, then this requirement is automatically satisfied.

(6) An average of only one "false" pulse per revolution will be allowed

at cruise RPM when the threshold is set for 90 percent probability of

detection on a third magnitude star. Most of these "false" pulses are due

to dimuner stars, and this criteria sets the minimum signal to noise ratio

requirements.

(7) To provide a safety margin for degradation of the instrument, the

design should provide at least a 50% larger signal to noise ratio than

required. One might reason that the photomultiplier tube should have a

larger safety margin because of its known degradation mechanisms and the

fact that it is a single channel and thus more vulnerable to failure.

On the other hand, the very low leakage silicon detector technology is

developmental, so perhaps its safety margin should be larger. For simplicity,

and to facilitate direct comparison, we have assumed the 50% margin for
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both sensors. These nominal designs can easily be adjusted for other values

if desired.

PRELIMINARY SENSOR DESIGNS

Based on the design requirements, a set of design specifications have

been developed for the two basic concepts. Both sensors measure star position

in both elevation and azimuth, and have an elevation field of view of 10

degrees and are designed to be mounted on the spacescraft at aspect angles of

45 and 135 degrees. The baffle rejection angle for each is 35 degrees to

allow a + 10 degree band around cruise orientation where both sensors are

operational. In spit of detector differences, the electronic singal process-

ing is similar for the two approaches, and both employ band pass filters

which track the spin speed.

Photomultiplier Tube Sensor

The photomultiplier tube sensor design is basically similar to existing

designs with a few specific differences. The phototube is the EMR type

541 E which is the glass-kovar ruggedized tube with an S-20 cathode. The

541 N is the same tube with a bi-alkalai cathode material. Tubes of this

type have been flown in star scanners and other space instruments. If the

Kovar in the tube is a problem, the ceramic tube, types 510 E or 510 N

could be substituted.

This design uses a "V-slit" reticle, each slit 0.3 degrees wide by 10

degrees elevation in a 45 degree "V" configuration. This "V" angle is

chosen as a tradeoff between accuracy of measuring the elevation angle, and

the stray light requirement of minimizing the field of view.

The signal to noise requirements and the 50 per cent safety factor

indicate that we should design for a signal to noise ratio of 20 for a third

magnitude star at 12 RPM spin speed. The signal to noise curves for the

photomultiplier snesor indicate that a 5 centimeter diameter aperture is

required to achieve this signal to noise ratio. This assumes a background

about midway between the 100 tenth magnitude stars per square degree average
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background and the 500 tenth magnitude stars per square degree typical of

bright areas.

The f/number does not directly affect the photomultiplier sensor sensi-

tivity, but the focal length must be short enough to keep the image size

smaller than the cathode sensitive area, and should also be kept short to

minimize the sensor length and volume. We have chosen an f/2 optical system

which can give sufficient resolution (less than 0.3 degrees blur) with only

two elements. The number of elements is minimized for to maximize stray

light rejection.

The baffle must have a 12 degree circular field of view to contain the

reticle pattern. With the aperture of 5 centimeters, the baffle must be 45

centimeters long and 32 centimeters in diameter to reject sunlight outside

35 degrees.

Because the photomultiplier tube is susceptible to damage from high

light levels, two protection mechanisms are provided to prevent this

problem. A circuit is incorporated which monitors the anode current and

reduces the power supply voltage when it gets above a threshold level.

A second mechanism which is activated by a small solid state sensor mounted

at the edge of the baffle will close a shutter if the sun threatens to get

too close to the field of view so that it might damage the cathode surface.

The electronic signal processing techniques employed in thissensor are

discussed later in this section.

Silicon Diode Sensor

The silicon detector sensor is a significant departure from the photo-

multiplier tube design, and offers several advantages such as smaller size,

lower susceptibility to stray light, lack of damage mechanisms, and much

better reliability.

The detector focal plane consists of an array of silicon diode detectors.

The number chosen depends on several involved tradeoffs centering around the

complexity of the electronic processing, which goes up as the number of

detectors, and the sensitivity of the instrument, which also goes up as the
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number of detectors goes up. Sensitivity as a function of number of detectors

can be determined from the curves of Section 7 where detector length is the

variable parameter. The complexity as a function of number of detectors

depends on the information processing techniques employed and their hardware

implementation. For example, if very little processing is done such as only

simple filtering, thresholding, and amplitude measurement without any correla-

tion with other channels, and if integrated circuits are designed and built

for this application, then adding additional channels adds very little to the

cost, size, or weight. In such a case, a larger number of detectors which

increases sensitivity and which would allow a smaller aperture and baffle

might be an effective tradeoff.

We have chosen an array of eight silicon detectors arranged in four pairs

of 45 degree "V's". Each pair is only about 2.5 degrees in elevation, and

each detector is 0.5 degrees wide. The "V" arrangement is retained to pro-

vide adequate elevation axis information, but if more detectors were employed,

or if one was willing to sacrifice elevation accuracy, a staggered linear

array with some overlap of elements could be employed instead, with an increase

of sensitivity due to a decrease in detector area.

A signal to noise ratio of 20 for the minimum star isrequired at

12 RPM spin speed, just as in the photomultiplier sensor, but because there

are more red stars in the sky, this minimum star is 2.5 magnitude (silicon)

rather than the third magnitude (visual) star required by the photomultiplier

tube sensor. This requires an aperture diameter of 3.2 centimeters.

The f/number must be kept as small as possible for the silicon detector

so we have chosen an f/l system of three elements, which will provide an

acceptable blur size throughout the + 5 degree field of view.

Since the detector array is 10 degrees long but only a couple degrees

wide, the baffle field of view need not be circular, but rather can be

oval. A baffle 11 degrees by 4 degrees will be sufficient, and must be

28 centimeters long and have a maximum opening of 19 centimeters to reject

sunlight 35 degrees or more from the optical axis.
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Since the silicon detector array is not susceptible to damage by high

light levels as is the photomultiplier sensor, protection mechanisms to

shut off the power or to activate a shutter are not required.

Table 10-1 summarizes the basic design features of the two sensor

approaches. One major difference between the two sensor approaches is the

size of the stray light baffle required. Figure 10-1 shows the rejection

angle and normalized width versus normalized length for the two field of

view angles involved. The differences here are small, but when combined

with the actual aperture diameters, the differences become more apparent,

as shown in Figure 10-2. The baffles required for the two systems for

rejection angles of 30 and 35 degrees are shown to scale in Figure 10-3.

It is readily apparent from the picture why it is important to minimize

the required aperture diameter and thereby minimize the baffle size.

ELECTRONIC DATA HANDLING DESIGN

The purpose of the electronic data handling system is to accept the

broadband signals coming from the photomultiplier or silicon detectors,

filter these signals to maximize the signal to noise ratios, detect star

crossings, encode the star crossing information, and present the encoded

information to the telemetry system for transmission. This can be done

in a wide variety of ways, and many additional functions can be added

which can reduce the total telemetry requirements by performing correlation

or other analysis on the data to discard false alarms, validate good data,

and compress its format. In order to make a Judgment about many of the

more complex schemes, the study team has examined some of these possibilities.

Our general conclusion, however, is that the benefits to be gained by

reducing the telemetry requirements by these complex data analysis schemes

are not sufficient to Justify their inclusion. This is because they in-

volve significantly increased design and manufacturing costs and some

additional weight and power, they invariably do not preserve all the

information which could be of benefit if sent to the ground for processing,
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they compromise the total system reliability, and they "mask" sensor internal

operation so that a malfunction can not be diagnosed as easily. Instead,

data rate can be controlled by a commandable threshold (desirable for other

reasons, too) which could be raised to a level such that only the brightest

objects in the sensor scan would be detected.

The baseline electronic design for both sensors, then, is fairly simple.

It is assumed that a pulse will be available from the sun which will serve

as a time reference for measuring all star crossings. The output of the

detector is amplified and passed through the bandpass filter. This filter

is an approximation to the optimum filter determined by the details of the

signal and noise frequency spectra, and consists basically of a high pass

and a low pass filter in cascade. The bandwidth and center frequency of

the filter must be adjusted as the spin speed is varied. This filter can be

implemented by various techniques including:

(a) Active filtering using off-the-shelf integrated circuit modules.

(b) Charge transfer or "bucket brigade" devices in a custom integrated
circuit design.

(c) Digital filtering using custom integrated circuit designs.

All of these methods can utilize the sun reference pulse repetition rate as

the input for bandwidth control.

The filtering section is followed by a command adjustable threshold

sensor which determines when a preset voltage level has been exceeded.

The signal produced by this threshold crossing initiates the following:

(1) Readout of the time counter (started by the sun reference pulse).

(2) Enable the peak measuring circuit and the associated analog to

digital converter which measures the amplitude of the pulse and digitizes

the information.

The digital output of the time counter and the peak measuring circuit

are placed in a storage register which is sampled by the telemetry. An

intermediate buffer may be required depending on telemetry requirements.

(3) When the signal falls below threshold again, a reset signal is

generated which returns all components to their original state, ready

for the next pulse to be received.

116

LOCKHEED MISSILES & SPACE COMoAfV



The measurement of the peak pulse amplitude is only one of several ways

in which the star crossing time can be accurately determined, but as

mentioned in Section 8, it is recommended over other possible methods be-

cause it most easily resolves possible ambiguities which can arise when stars

are closely spaced, it facilitates star identification, and it is easy to

implement in hardware.

Amplitude Measurement

The method of encoding amplitude suggested is one providing constant

percentage error regardless of input amplitude. This is possible by

utilizing a fixed increment digital encoder preceded by a log amplifier.

Since a log amplifier has an output amplitude that is related by a

constant factor to the logarithm of the input amplitude, the encoding

resolution will represent the same percentage error of the input amplitude

over the total encoding range. For example, if the peak input signal

is expected to have a dynamic range of 100/1 and the digital encoder is

capable of encoding the log amplifier output into 128 increments, then the

percentage error represented by one encoding increment is approximately

3.7 percent for any input amplitude within the dynamic range. If, instead,

a linear amplifier output were encoded for the above example, the encoding

accuracy for a maximum signal level input would be 0.78 percent for a one

resolution cell error, however,for a signal level a factor of 10 lower,

the error would be 7.8 percent. Thus the percentage error increases with

decreasing amplitude which is undesirable. The number of levels chosen

for encoding will be a function of the input signal to noise ratio and the

accuracy requirements for the sensor.

The photomultiplier sensor with its single information channel will

require only a single set of electronics which perform the above functions.

Unless weight, space, and power are at an extreme premium, this circuitry

would most likely be made up of discrete components and/or commercially

available integrated circuits. The expense of designing, building, and

qualification testing custom:,integrated circuits which would perform the
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required operation on a couple of chips or so is probably not justified,

although this approach would likely increase the reliability of the

circuitry.

The second sensor design involves several detectors (nominally eight)

and requires a separate set of electronics for each. In this situation it

is much more important -to minimize the size, weight, and power requirements

of each channel, and thus the design and construction of custom integrated

circuits to perform suchfunctions becomes more attractive. Once we have

constructed the integrated circuits, additional channels can be included in

the design for very little~\extra cost. A detailed analysis based upon firmer

design parameters may well show that there are two distinct categories of

multiple detector sensors. !One using discrete components would be limited

to a relative few channels, while the other using integrated circuits would

not be so limited by the electronics and would use many more detectors to

increase sensitivity so that the optics and baffle sizes could be reduced.

The question of whether or not to employ custom integrated circuits also

depends heavily on the number of sensors to be built.

Data Transmission Requirements

The data transmission requirements for the star scanner will be influenced

by the accuracy required in encoding amplitude of the pulse, and the threshold

crossing time. Each star viewed will cross each slit of the V-slit sensor

or two detectors in the multiple detector sensor. In the simple logic scheme

used as the baseline design, each crossing will involve a crossing time

measurement and an amplitude measurement. More complex schemes where the

two crossings are recognized as being due to one star can reduce the data

requirements by requiring only one amplitude measurement (or perhaps an

average of the two), and a fewer number of bits on the time measurement of the

second pulse. Some information is lost in this process, however.

The data word for encoding the crossing time will be required to encode a

360 degree sector to approximately 0.1 degree accuracy. To estimate the

number of bits required it was assumed that the RMS accuracy required would

be 0.1 degree and that a uniform probability density function would describe

the random variable. With these assumptions
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C-= a

where a = standard deviation

a = resolution element size

If a = 0.1°, a = 0.34640 requiring 1039 resolution elements. Since

1024 elements will be produced by 10 bit accuracy, no more than 11 bits

should be required.

Assuming the use of log encoding for the amplitude information it is

anticipated that no more than 7 bits will be required. This is based on

a dynamic range of 100 and a maximum encoding error of 2 percent. The

data collected per star crossing is thus 11 bits plus 7 bits or 18 bits

total per crossing.

The data rate transmitted to the ground will depend on the number of

stars crossing threshold per scan revolution and the spin speed. Each

star crossing generates 18 bits of data or 36 bits per star per revolution.

The maximum spin speed of 120 rpm or 2 revolutions per second would then

produce 72 bits per second per star. For attitudes when the high gain

antenna cannot be used, the data capacity of the telemetry could easily

be exceeded. This could be handled, however, since each scan will produce

the same date (ideally at least) and the storage registers can be sampled

at a much slower rate if required. The amount of data taken per revolution

can also be limited, of course, by raising the threshold to reduce the

number of stars detected.

The above values are correct for the photomultiplier sensor, which has

only one information channel. The silicon detector sensor with its multiple

detectors requires additional bits to identify the particular detector which

received the light signal. Three bits per star crossing will identify each

detector out of the eight in the array. This information adds considerable

redundancy and allows powerful discrimination against false alarms and stray

light interference.
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Sensor Comparisons

The major physical features of the two sensor designs was summarized

earlier in Table 10-1. The photomultiplier sensor somewhat surprisingly

turns out to require a significantly larger aperture than the silicon

diode array sensor. This is because although the photomultiplier has

inherently greater sensitivity than the silicon detector, its larger area

receives much more background radiation, it has much lower quantum efficiency

and a narrower spectral bandpass, and because of the spectral region of

operation, must sense higher magnitude (dimmer) stars.

Table 10-2 compares the two sensors in terms of complexity, reliability,

and costs. The single channel of the photomultiplier sensor requires much

less electronics than the several channels of the silicon diode snesor.

On the other hand, all the detector channels of the silicon detector sensor

are identical, and this unit does not require the high voltage power supply

and the two protection mechanisms that the photomultiplier sensor requires.

The overall complexity of the two approaches is about the same, particularly

if custom integrated circuits are employed in the information processing

channels which reduces the part count per channel tremendously.

The reliability of the two sensor systems is radically different. On

one hand, the photomultiplier Esnsor employs a single detector which can be

degraded or permanently damaged by high light levels, and which requires

protection mechanisms, one of which is a mechanical device. A high voltage

power supply is required which is generally considered to have much lower

reliability than the low voltage supplies required in the silicon detector

sensor. The silicon sensor features a number of parallel channels, and can

operate acceptably even with bSveral of them not functioning. The silicon

detectors are inherently more rugged than the photomultiplier tube and do

not require the protection mechanisms, particularly the mechanicallshutter,

which can be prone to failure. The silicon detector sensor is clearly

superior as far as reliability is concerned.
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What are the costs of the two sensor systems? We have divided the costs

into four categories: development costs, test equipment costs, snsor fabrica-

tion and assembly excluding the electronics, and the electronics costs.

The development costs for the photomultiplier sensor will be significantly

less than for the silicon diode sensor. The photomultiplier sensor is a

"traditional design" and can use some existing components such as power

supplies and protection circuitry currently used on other sensors. The

optical system and baffle must be developed for this purpose for both sensor

systems. The silicon detector technology is still developmental and will

entail more costs on this account. Over all, we estimate that a silicon

diode sensor will cost about 30 to 50% more to develop for this Pioneer

Venus application than a photomultiplier detector sensor of a more tradi-

tional design.

The test equipment costs will be about the same for the two systems,

since they have the same operating requirements. The photomultiplier system

will require testing of the protection mechanisms which are not required of

the silicon diode sensor, but this is probably not a significant fraction

of the whole.

The costs of the sensors without the electronics is about the same for

the two approaches, since the basic hardware consisting of the physical

housings, the optics, and the baffle are similar in the two cases. This

cost is certain to be small compared to the electronics in any case.

The relative electronic costs include a number of variables which are

difficult to assess. The costs of the silicon detectors themselves are

more or less unknown, and the costs of producing the integrated circuits

for this application will vary considerably depending on the number of

units produced, since the initial costs of the circuit artwork is high

compared to the costs of producing the circuits once the artwork and masks

are made. For example, a set of masks to produce the custom circuits

required for a sensor may cost about $50,000, but the individual circuits

may be produced for $100 or so after this is completed. We estimate that
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the electronics cost to produce six sensors (enough for two flights plus

spares for a third), will range from about the same for the two approaches

up to about 20% more for the silicon diode array sensor.

One cost item which has not been included and which can vary considerably,

is the costs of qualification testing of components and assemblies. Since

a wide variety of requirements can be imposed, we have omitted this item from

the cost comparisons. Such costs should be included, of course, in making

the final tradeoff comparisons between the two systems.

Both the photomultiplier tube sensor and a sensor using silicon diode

detectors can meet all the requirements of the Pioneer Venus mission.

The photomultiplier system is a more traditional design but is larger,

heavier, and less reliable than the silicon diode sensor which is more

developmental and will cost somewhat more to develop and to build. The

silicon diode sensor is significantly less susceptible to interference due

to stray light.
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SECTION 11

OPTIONS TO SIMPI;FY AkT ITUDE DETERMINATION SYSTEM

The system we have described so far will meet all the attitude determina-

tion requirements as listed in Section 4. It will provide attitude informa-

tion at all spin speeds and orientations. Its multiple sensors and the

inclusion of the sun aspect sensor provide considerable redundancy so that

one sensor can fail completely and the system will still provide adequate

attitude information for most orientations. Because of this complete

capability, the system as described provides complete flexibility to modify

the mission profile essentially at will at a later date, unconstrained by

any limitations of the attitude determination system.

This section examines ways in which these attitude determination require-

ments might be relaxed to simplify the attitude determination system or to

reduce costs, size, weight, power, or exact other benefits. The sensor

system requirements can be reduced in essentially four ways. They are:

(1) Relax the redundancy requirement and give up the ability to

operate in all possible orientations.

(2) Reduce the maximum spin speed requirement and/or the requirement

to operate over a wide range of spin speeds.

(3) Reduce the sensitivity requirements by relaxing the requirement

to operate at the worst case orientation.

(4) Reduce accuracy requirements.

Reduce Redundancy Requirenents

The complexity, weight, and power requirements of the attitude determina-

tion system are cut nearly in half if only one sensor is employed rather than

two. The ability to measure attitude in the cruise (reference) position is

retained, but the redundancy is lost. This option is particularly un-

attractive for the photomultiplier sensor which has a critical failure path

through its single detector channel. The silicon detector sensor with its
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much higher reliability is more of a candidate here. Complete attitude

determination ability is retained over more than a complete hemisphere,

and if the silicon sensor is designed so it will recover sufficiently fast,

a reduced capability over the other hemisphere will be available except

when the sun actually comes within the field of view of the silicon detector

and heats it. This sort of operation with the photomultiplier sensor would

require the shutter to cycle off and on once per revolution which seems

very risky, since the shutter needs to "hang-up" only once momentarily

to destroy the detector. A safer approach would be to celose the shutter

and "open loop" control from the reference cruise orientation.

Reduce Spin Speed Requirements

The sensor system can be simplified if the requirement to operate at all

spin speeds is relaxed. If a fixed cruise spin speed is chosen, and the

sensor is only required to operate at this speed, a fixed filter rather

than a variable filter could be employed, with a significant reduction in

the complexity of electronic circuitry, and a subsequent increase in

reliability. If operation at a higher speed is required, the orientation

could be determined at the cruise speed, and then the vehicle could be

"spun-up" with little chance that the attitude would be changed by the

operation. The speed would then be reduced and the attitude remeasured to

add confidence to procedure. This relaxation in the spin speed requirement,

however, does not serve to reduce the sensitivity requirement, since that

is determined by the ability to operate with the worst case star distribution

at cruise RPM. The sensitivity can be reduced, however, by reducing spin speed

at cruise, since the signal to noise ratio will vary inversely as the square

root of the spin speed. Another way is the next item, reducing the require-

ment to operate in all possible orientations.

Relax the Requirement of Operating in All Orientations.

As shown in Section 6, the stars are not arranged in the sky in a regular

fashion, and thus there exist worst case distributions and worst case orienta-

tions for the spacecraft spin axis. These worst cases are very rare, but are
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sufficiently worse than average, so the requirement to work in all possible

orientations is fairly severe. If this requirement were relaxed somewhat,

say to 80 percent of all orientations, a considerable reduction in the

required sensitivity would result, and the sensor could be made significantly

smaller.

Reduce Accuracy Requirement

At first thought, reducing the accuracy requirement of the sensor and

attitude determination system is an obvious way to simplify the system and

reduce the required sensitivity. Such is not the case. As shown in Section 8,

high accuracy measurements can be made at fairly low signal to noise ratios,

and the real requirement on the signal to noise ratios comes from the necessity

of limiting false pulses due to the dimmer stars. About the only benefit to

be directly attributable to reducing the accuracy requirement is a reduction

in the telemetry data bandwidth by reducing the number of bits of quantization.

This procedure makes star identification increasingly difficult, however,

since identification is primarily based on accurate measurement of angular

separation between stars. Reducing the elevation angle accuracy of individual

star positions might be desirable, since it would allow a staggered linear

silicon detector array of smaller area rather than the pairs of "V-slits"

detectors. The only significant impact this would have on the spin axis

accuracy would occur when only a single star was observed per scan. Again

star identification becomes more difficult. In general, very little is

gained by relaxing the attitude determination requirements beyond the 0.1

degree to 1.0 degree range.

Combinations

The four methods of relaxing the system requirements as discussed above

can be combined in a number of ways to produce various configurations. For

instance, only one sensor could be used, which reduces redundancy, but it

could be a silicon detector sensor with a fixed filter operating only at

one speed which is a highly reliable configuration, thus tending to offset

the lack of redundancy. In addition, a single sensor might be designed
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with a slightly larger aperture to provide a larger safety factor in the

signal to noise ratios. Such combinations are numerous and fairly obvious

and will not be further detailed.
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SECTION 12

SURVEY OF APPLICABLE STAR SCAINNER TECHNOLOGY

A survey of current star scanner technology has been donducted to determine

if there are any existing sensors or components which could be used, perhaps

with modification, on the Pioneer Venus program. Since much of the desired

information is not available in report form, we made direct inquiry, initially

by telephone, with a number of industrial, academic, or governmental groups

which have been involved in star sensor design, development, manufacture,

or operation. In all, fifteen separate organizations were contacted. These

groups, along with their addresses, telephone numbers, and the namesof the

person contacted are listed below.

1. Goddard Space Flight Center
Greenbelt, Maryland
(301) 474-9000 (Bill Hibbard)

2. Avco Corporation, Systems Division
201 Lowell Street
Wilmington, Massachusetts 01887
(617) 657-5111 (Albert Merlisni)

3. TRW Systems Group
One Space Park
Redondo Beach, CA.
(213) 535-2036 (Pat Hutching)

4. International Telephone and Telegraph Corp.
Electro-Optical laboratory
15151 Bledsoe Street
San Fernando, CA. 91342
(213) 362-1511 (Ieo Cardone)

5. American Science and Engineering, Inc.
11 Carleton Street
Cambridge, Mass. 02142
(617) 862-6222 (Bruce Stanton)

7. Adcole Corp.
330 Bear Hill Rd.
Waltham, Mass. 02154
(617) 890-3400 (Ralph Abbott)
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8. Singer-General Precision, Inc.
Kearfott Division
1150 McBride Avenue
Little Falls, New Jersey 07424
(201) 256-4oo000 (Sol Shapiro)

9. Control Data Corporation
Minneapolis, Minnesota
(612) 853-3218 (Joe Carroll)

10. Ball Brothers Research Corp.
Boulder Industrial Park
P. O. Nox 1062
Boulder, Colorado 80332
(303) 441-4oo00 (John Sand)

11. Quantic Industries, Inc.
999 Commercial Street
San Carlos, CA. 94070
(415) 591-9411 (Dick Ronald)

12. Kollsman Instrument Corp.
575 Underhill Blvd.
Syosset, N. Y. 11791
(516) 921-4300 (Jim Connors)

13. Perkin-Elmer Corp.
Boller & Chivens Division
South Pasadena, CA. 91030
(213) 682-3391

14. Astro Mecnhnics, Inc.
8500 Research Blvd.
Austin, Texas
(512) 452-8815

15. Applied Physics Lab
John Hopkins University
Scaggsville, Maryland
(301) 953-7100 (Fred Schenkle)

Information received through contact with these organizations is listed

below. There are a number of sensor systems covered in the survey which

have some applicability to the Pioneer Venus mission. The parameters of

these sensors are summarized in Table 12-1, and the modifications to these

sensors which would be needed to enable them to meet the Pioneer Venus

requirements are discussed in the text.
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Program

Manufacturer

S3

Goddard Space
Flight Center

OSO-7

Ball Brothers

ATS-3

Control Data
Corporation

Sensor Type Photomultiplier- Photomultiplier- Photomultiplier
Reticle-Single Reticle V Slit
Slit

Size (inches) 8 x 1 1/2 dia. 13 x 4 Dia. 6 x 12 x 18 incl
ball release mech.

Weight (lbs) 3 10 25

Power (watt) 1 1.25 .75

Spin Rate 4 to 7 30 100
RPM

Magnitude +3.5 ·+4.5 2.5

Sun Angle 90 Night Orbit 28
(deg)

Accuracy .10(3a) ·03 1.5 min.

Detector Photomultiplier Photomultiplier Photomultiplier
EMR 541-E-01-14

Field of View 25 x .3 10 elevation 12
(deg) Single slit V slits

Optics & Refractive Refractive 3.5 Refractive
Aperture 1.25

Reliability NA NA NA

Status Operational Operational Operational for
6 months

Comments Slow Spin Rate Night Orbit Experiment ended
EMI Susceptible only after 6 months

(h31 
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Program

Manufacturer

Sensor Type

Size (inches)

SAS-A,B

American Science
and Engineering

Photomultiplier
N Reticle

10 x 5 Dia.
(SAS-A)

SAS-B

Johns Hopkins
Applied Physics
Laboratory

Photomultiplier
N Reticle

130 in3

SCANNER

Honeywell
Radiation Center

Phtoulipie
Photomultiplier
Reticle

21.5 x 8.0 x 16.0

Weight (lbs) 10 4.75 42.19

Power (watt) .65 .4 1

Spin Rate .1 to 1 .1 to 3 60 to 120
REPM

Magnitude +5 +5 +3

Sun Angle 40 60 45
(deg)

Accuracy 1.0 Min. 1 min. 20 sec.

Detector Photomultiplier Photomultiplier Photomultiplier
EMR 54.1 EMR 541A

Field of View 10 x 5 10 elevation 6 x 6
(deg.) 5 between parallel

slits

Optics & Refractive 2 Refractive Refractive 2.75
Aperture

Reliability NA .664 (1000 hrs.)

Status SAS-A Operational To be flown Fall Operational
1972

Destroyed after
one flight

TABLE 12-1, SECTION 2
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Program

Manufacturer

SPARS

Control
Data
Corp.

Pioneer Jupiter

TRW Systems
Group

Pioneer Venus

Control Data
Corporation

Pioneer Venus

Kollsman

Sensor Type Solid Solid State Solid State Solid State
State

Size (inches) X/A 6 1/4 x 4 1/2 x 5.5 Dia. 3.3 7.6 x 4.5 Dia.
6 long

Weight (lbs) N/A 2.5 1.6 5.4

Power (watt) N/A .5 .8 1.0

Spin Rate N/A 2 to 5.8 75 75
RTPM

Magnitude N/A Canopus 0 mag silicon 0.0 Silicon

Sun Angle N/A 50 (with sun N/A 30
(deg) shade)

Accuracy N/A 0.50(3a) 3 min .3 (la)

Detector Cadmium Silicon Silicon PIN Silicon
Sulfide Photodiode
Belenide

Field of 4 eleva- .5 x 40 45 45 elevation
View (deg.) tion Single slit

Optics & Concentric Cassegrain 2.1 effective Refractive
Aperture 2nc25 Bowers aperture

Cassegrain

Reliability 0.98 (3 yrs.) NA 0.91 (2 yrs.)

Status Prototype Operational Proposed Proposed

Comments High Ac- Usable on bright
curacy stars only
Very Slow
Rates

TABLE 12-1, Section 3
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Goddard Space Flight Center. Goddard Space Flight Center (GSFC)

designed and built the Scanning Celestial Attitude Determination System (SCADS)

for use on the Small Scientific Satellite (S3) program. The SCADS is an

operational system which is being successfully flown. The system is a photo-

multiplier-reticle type, 8 inches long by 1.5 inches in diameter, weighing

about 3 pounds. Its field-of-view, defined by a single reticle slit, is 25

degrees by 0.3 degrees. It can detect stars to +3-5 magnitude to a 3a spin

orientation accuracy of 0.1 degrees. It consumes 1 watt of power and was

designed to operate at a spin rate of 4 revolutions per minute.

Problems with satellite wobble caused the initial information from the

star scanner to be severely degraded. However, when the satellite spin rate

was increased to 7 revolutions-per-minute, the wobble was eliminated and the

SCADS sensor operated as designed. The S3 experimenters also noticed a

noisy sensor output at the lower satellite altitudes. This noise disappeared

at the higher altitudes and was attributed to strong ionizing radiation at

the lower altitudes which caused scintillation in the photomultiplier tube.

The SCADS sensor seems to be very susceptible to EMI when in orbit, so the

experimenters feel it would be advisable to incorporate noise rejection

circuitry and additional shielding and filtering in future sensors.

The SCADS Sensor would require extensive modification to meet the Pioneer

Venus requirements. These modifications would include:

(1) The 3.2 centimeter diameter aperture would have to be increased to

about 5 centimeters to provide sufficient sensitivity for the spin speeds

to be covered. At the same time, the optical system could be simplified

to reduce the large number of elements of the present design. A larger

photomultiplier tube may be required because of this change.

(2) An effective baffle must be added, since the SCADS is designed to

only work when oriented more than 90 degrees from the sun. The large

(25 degree) field of view makes this difficult.

(3) SCADS uses a single slit reticle which we feel is not as desirable

for the Pioneer Venus star scanner as the V-slit reticle, although it is

acceptable. Changing to a V-slit would allow a reduction in the elevation

field of view and simplify the baffle design.

134,

LOCKHEED MISSILES & SPACE COMMANIV



(4) The electronic circuitry must be modified to accommodate the wide

range of spin speeds to be encountered. Other changes may be necessary to

make the sensor output compatible with the telemetry interface and available

information bandwidth. Because of current EMI experience, filtering and

noise rejection circuitry should be included.

These modifications constitute a complete redesign of the sensor although

some components, such as photomultiplier tube power supply, may be directly

used.

System Division of AVCO Corporation. AVCO was to build the Magnetic

Storm Satellite (MSS) for NASA. This was to be a fairly conventional photo-

multiplier-reticle system. All of the star scanner parts had been ordered

and breadboard tests had just begun when the MSS program was cancelled. Work

on the instrument ceased immediately and it was never completed.

TRW Systems Group. TRW has built a solid state single axis Canopus star

sensor which is presently operational on the Pibneer Jupiter spacecraft.

This device utilizes a solid state silicon detector having a .5 degree by

40 degree field-of-view. It weighs 2.5 pounds, is 6.25 x 4.5 x 5.9 inches

in size (without sun shade) and consumes under 1/2 watt of power. It is

designed to operate with a spin rate of 2 to 5.8 revolutions-per-minute,

and has a reliability of 0.98 for 3 years.

The star sensor requirements for this Jupiter mission are very much

different than the Pioneer Venus requirements. This instrument is only a

"pipper" which provides a roll reference by detecting one star, Canopus.

It could not readily be converted into a device to satisfy the Pioneer

Venus requirements. It does not have the sensitivity to track the dimmer

stars which is required of the Pioneer Venus Star scanner. To increase its

sensitivity would be major undertaking. The aperture would have to be

increased or a more sensitive detector utilized. Its spin rates are not

compatible and its single axis configuration should be converted to a dual

axis mode. All this requires modification of the device to such an extent

as to constitute a completely new sensor design.
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ITT Electro-Optical Laboratories. ITT has specialized in the image

dissector type of star sensor, and all of their sensors are built using

this device which they manufacture. In the image dissector systemscanning

is done electronically in the dissector tube and thus the need for a mechanical

scanner, necessary if the space vehicle is stabilized, is eliminated. Elec-

tronic scanning in this way greatly increases the star sensor's electronic

complexity, and, as a result of this, ITT image dissector sensors have complex

electronics. For spinning vehicle applications such as the Pioneer Venus,

it is simpler and much more efficient to use the vehicle motion to provide

the scanning for the sensor. The image dissector is applicable to a star

tracker on a 3-axis stabilized vehicle, but is of no interest for this

Pioneer Venus application.

American Science and Engineering. American Science and Engineering

(AS&E) has built the star scanner presently operating on the Small

Astronomical Satellite A (SAS-A). The company is also building a similar

star scanner to be flown on the SAS-B. These are photomultiplier "N slit"

reticle systems. Although the physical configurations of the two units

are slightly different, both have similar parameters. They are designed

for spin rates of .1 to 1 revolution-per-minute. They can detect stars

to fifth magnitude to an accuracy of 1 arc minute. They have refractive

optical systems and fields-of-view defined by the reticle of 10 degrees by

5 degrees. They both consume under 1 watt of power. The SAS-A is approxi-

mately 10 inches long by 5 inches in diameter without the sunshield. The

SAS-B is odd shaped and approximately the same volume as the SAIS-A. Both

weigh about 10 pounds.

The SAS Sensors would require considerable modification to meet the

Pioneer Venus mission requirements, because they are designed for much

higher accuracy and much slower spin speeds. They use a Super-Farron lens

system, for example, which is a very fast, high resolution system, while

the Pioneer Venus program requires a much simpler system to reduce weight

and enhance stray light rejection.
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Honeywell Radiation Center. Honeywell built a star scanning system in

the early sixties which was flown on an Aerobee Sounding Rocket. This was a

conventional photomultiplier-reticle system designed to operate at a spin

rate of 60 to 120 revolutions-per-minute. The system weight was 42 lbs and

its dimensions were 21 x 8 x 16 inches, including the sun shade. It had a

20 arc second accuracy on third magnitude stars. It had refractive optics

and a multiple V slit reticle giving a 6 degree x 6 degree total field-of-

view. It was designed to operate 45 degrees from the sun line with a .664

reliability for 1000 hours. The device consumed under 1 watt of power. The

scanner operated successfully but was destroyed after the first flight when

the rocket went off course and landed in the ocean.

Honeywell is presently building a star scanner for the Air Force Space

Precision Altitude Reference System (SPARS) Program. This sensor is a

fairly large device designed for very high accuracy and very slow spin rates.

It uses solid state detectors in a multiple slit configuration, and is not

applicable to the Pioneer Venus mission because of the radically different

design parameters.

Adcole Corporation. Adcole has built one star scanner for NASA Goddard

but it is no longer interested in star scanners, and we were unable to

obtain details of their earlier work.

Singer General Precision Incorporated, Kearfott Division. Kearfott is

doing some classified star sensing work for the Air Force, but it is not

directly applicable to our requirements. Kearfott had specialized in systems

using vidicon tubes as detectors, which like the ITT image dissector sensors

discussed above, are useful in star tracking systems from 3-axis stabilized

vehicles, but have little applicability to star scanning systems on spinning

vehicles. These systems generally have high performance, especially when

tracking in bright backgrounds, but they are quite complex. The vidicon

must be scanned with precisely generated electronic waveforms and thus

complex electronic scan generation circuitry is required. Since the vidicon

is a hot filament tube reliability can also be a problem. High power
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consumption is also characteristic of these systems. It is recommended that

complex television type systems, such as vidicon star sensors, not be used on

the Pioneer Venus mission.

Control Data Corporation. Control Data Corporation (CDC) has built

several starmapping systems including the Advanced Technology Satellite-3

(ATS-3) and the initial SPARS cadmium sulfide-selenide detector star scanner.

The ATS-3 was a photomultiplier-reticle system operating at a 100 revolution-

per-minute spin rate, measuring 6 x 12 x 18 inches and weighing about 25

pounds. It could detect stars down to 2.5 magnitude with an accuracy of

1.5 arc minutes. It had a 3.5 inch objective aperture and was operational

for 6 months after which time problems with the satellite resulted in the

star scanner experiment being terminated. It utilized a double "V'slit"

reticle with an overall field-of-view of 12 degrees. With a sun shade it

could operate to within 28 degrees of the sun line. The star scanner also

included a mechanism to release a reflecting ball for a separate experiment

to be done with the ATS-3 vehicle.

CDC recently completed the preliminary development of the SPARS solid

state star scanner. The company designed, built, and successfully tested

this device which used cadmium sulfide-selenide as the detection material.

The CDC SPARS star scanner was a fairly large device designed for very

high accuracy and slow spin rates (1 revolution per 90 minutes). It used

a concentric optical system having a 2.25 inch effective aperture. Its

field-of-view was 4 degrees in the elevation direction. This device is not

suitable for the Pioneer Venus mission because the very slow spin rates

it was designed to operate at are not compatible with the higher rates

of Pioneer Venus. The very high accuracy provided by this sensor is also

not required by the Pioneer Venus units. CDC is no longer working on this

starmapper since Honeywell, the prime SPARS contractor, decided to build the

SPARS star scanner itself.

CDC has proposed a small solid state star scanner using a silicon

detector to one of the Pioneer Venus system study contractors. The proposed
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device is 5.5 inches in diameter and 3.3 inches long. Its weight is 1.6 pounds

and it consumes 0.8 watts of power. It has a 3 arc minute accuracy on zero

magnitude silicon stars at a 75 revolution-per-minute spin rate. The instru-

ment has a 2.1 inch effective aperture Cassegrain optical system, a field-of-

view of 45 degrees in the elevation direction, and uses a silicon P/N photo-

diode detector. This star scanner meets the Pioneer Venus mission requirements

established by the system study contractor several months ago, but these re-

quirements are significantly different from the requirements developed in this

study. We believe that the 45 degree field of view requirement is particularly

unwise for stray light rejection reasons.

Ball Brothers Research Corporation. Ball Brothers Reserach Corporation

(BBRC) has built the Orbiting Solar Observatory-7 (0SO-7) star scanner under

contract to NASA Goddard Space Flight Center. The OS0-7 star scanner is a

photomultiplier-reticle device, presently in operation at a 30 revolution

per minute spin rate. This scanner is 13 inches long and 4 inches in diameter.

It weighs 10 pounds and consumes 1.25 watts. Its accuracy on a 4.5 magnitude

star is 1.8 arc minutes. Its "V-slit" reticle has a field-of-view in eleva-

tion of 10 degrees. The sensor will operate in night orbit only.

This OSO-7 sensor could be modified to meet the Pioneer Venus requirements.

It is somewhat heavier than desirable, but if a simpler optical system is

employed the weight could be reduced. Of course, a sunshield baffle must

be added, integrated with the optical system, to provide stray light rejection.

A shutter should be added to the electrical protection circuits already

employed.

The electronics must be modified to include the ability to operate over

the expected range of spin speeds, and may well require additional modifica-

tion to meet telemetry interface and bandwidth requirements. Modification

of the physical packaging of the sensor will probably be required to interface

with the Pioneer Venus vehicle, since it presently is packaged in several

pieces, some rectangular, a triangular section, and the cylindrical section

with the optics and photomultiplier tube.
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Thus it is likely that very little of the present OS0-7 sensor design

could be used without modification of some sort. Rather than try to preserve

the design with so many modifications, it seems better to us to start afresh

using some of the applicable design principles and concepts proven in this

and/or other sensorso

BBRC has been doing developmental work on a silicon solid state star

scanner. This solid state sensor is a derivative of a breadboard system

which BBRC built and delivered to Comsat. The Comsat system was a startracker

designed for a stabilized vehicle and thus not compatible with Pioneer Venus

Probe requirements. It did, however, use a silicon slit detector which could

be utilized in a spinning star scanner system.

Quantic Industries. Quantic Industries is building a star tracker for

the Air Force using a silicon solid state detector. They have not built any

star scanning systems and this star tracker system is sufficiently dissimilar

to the Pioneer Venus requirements that its concept, design, and component

hardware are not of interest in this study.

Kollsman Instrument Corporation° Kollsman Instrument Corporation has

had extensive experience in the star sensing field, although most of their

work has been in the gimballed star tracker area. They have proposed a

star scanner for the Pioneer Venus mission to one of the systems study

contractors, as did CDC. Their proposed system is 7.6 inches by 4.5 inches

diameter in size and has a weight of 5.4 pounds. It consumes 1 watt of

power and provides a 0.3 degree la accuracy on a zero magnitude silicon

star at a 75 revolution-per-minute spin rate. It uses refractive optics

and has a elevation field-of-view of 45 degrees. Its reliability is 0.91

for 2 years. With a sun shield, Kollsman claims the star scanner can

operate 30 degrees from the sun lineo This current study shows that this

proposed system as well as the CDC proposed system with 45 degree fields-

of-view make baffling to reject stray light extremely difficult. A field-

of-view of 15 degrees or less is much more reasonable from a stray light

rejection viewpoint.
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Perkin-Elmer Corporation. Perkin-Elmer builds large astronomical tele-

scope systems and a variety of other optical instrumentation but does not

make any suitable star scanner hardware.

Astro Mechanics, Inc. Astro Mechanics Inc. specializes in large astro-

nomical telescope systems and does not build any suitable star scanner systems.

Applied Physics Laboratory of John Hopkins University. The Applied

Physics Laboratory (APL) is building a star sensor for use on the SAS-B.

This is a photomultiplier-reticle system which is similar to the American

Science and Engineering SAS star sensors. The star scanner weighs 4.75 lbs.

and occupies a volume of 130 cubic inches. Its power consumption is 0.4

watts. It uses a 2 inch refractive optical system and an N slit reticle with

a field-of-view in elevation of 10 degrees. The scanner operates at a spin

rate from 0.1 to 3 revolutions-per-minute to within 60 degrees from the sun

line. The system provides a 1.O arc minute accuracy when detecting fifth

magnitude stars. Plans are to fly this system in the fall of 1972. Because

it is designed for high resolution and slow spin speeds, the optics and

electronics require extensive redesign, and a much improved sunshield must

be added to reduce the stray light rejection angle from 60 degrees to 35

degrees or so. APL does not normally build devices for sale to outside con-

tractors.

SU4MARY OF TECHNOLOGY SURVEY

This survey has shown that several organizations have built instruments

similar in some ways to that required on the Pioneer Venus mission. They are:

Goddard Space Flight Center

American Science and Engineering

Honeywell Radiation Center

Control Data Corporation

Ball Brothers Research Corp.

Applied Physics Lab of John Hopkins University
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Table 12-1 summarizes the major parameters of the systems built by

these organizations, the two Pioneer Venus star scanner proposals, and

Pioneer Jupiter Star "pipper". It can be seen from the table that most of

the operational starmapping systems built to date have been of the reticle-

photomultiplier type. Also, most of the systems built to date have

operated at slower spin rates than desired for the Pioneer Venus mission.

Several of the systems described could be modified to perform the Pioneer

Venus mission satisfactorily, but in all cases considerable modification

is required and/or will involve additional constraints on the vehicle and

mission. Based on our analysis of the survey data, we feel that a

completely new design, based on the proven design principles demonstrated

in these sensors, rather than modification of one of them, is the cost

effective approach which will allow the most freedom to optimize the

instrument for this specific application.
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SECTION 13

CONCLUSIONS

From the information developed in the study, several conclusions may

be drawn concerning the application of star scanner systems to the Pioneer

Venus mission.

(1) A star scanner system can meet all attitude determination require-

ments. This will require two sensors mounted on the spacecraft at aspect

angles of 45 degrees and 135 degrees. A baffle must be included to reject

off axis light (from the sun or planetary albedo) outside 35 degrees. A

sun aspect angle sensor should be included in the attitude determination

system.

(2) The star sensor design can be either a "traditional" type using

a photomultiplier and a V-slit reticle, or it can employ an array of silicon

diode detectors. The silicon diode sensor offers many advantages including

smaller size, less power, much greater reliability, and a significantly

lower susceptibility to interference from stray light, but is more develop-

mental and thus will cost more for development.

(3) The information processing: in the spacecraft should be kept simple

to increase reliability and minimize complexity and cost. A number of fairly

elaborate schemes could be employed to validate and condense the data, but

all such methods eliminate some information which can be of use. It is

desirable to minimize the data rate, which can be accomplished with a simple

command adjustable threshold to limit the number of stars detected.

(4) Stray light is a major problem in star scanner systems. A two

stage cone type baffle is recommended for this application, and the optical

system should be designed for low scatter characteristics. The silicon

detector sensor has advantages in this regard.

(5) The stray light rejection capability required of the sensor is

very high (up to 10 , depending on sensor details and rejection definition).

The problem is sufficiently complex that the only way to assure that the

sensor will meet the requirements is to directly measure the rejection.
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Unfortunately, conventional measurement techniques are not adequate and

improved methods must be developed. Two methods are suggested which

potentially could be developed into measurement facilities capable of

measuring the high rejection ratios required.

(6) None of the sensors covered in the technology survey will meet

the requirements of the Pioneer Venus mission without extensive modifica-

tion. Several sensors, such as SCADS, QS0-7, and the SAS sensors, employ

some of the design concepts applicable to a Pioneer Venus sensor, but all

would require a completely new baffle and a redesigned optical system

compatible with the baffle. To meet the spin speed requirements the

electronics must be modified and repackaging would likely be required to

interface with the Pioneer Venus spacecraft. In some cases the size of

the optical system must be increased to provide the required sensitivity.

All these sensors are the photomultiplier-reticle type, and some components

from these sensors which have been proven in flight hardware such as the

photomultiplier power supply, protection mechanisms, and reticle designs,

could be used directly in this application. To provide a sensor capable

of meeting all the Pioneer Venus requirements, it is felt that rather than

modification of any existing design,.the most cost effective approach is

development of a new design based on these proven concepts where applicable.

(7) There are several ways in which the requirements can be relaxed

to simplify the sensor system, or reduce size, weight, power, or cost.

These include reducing redundancy, reducing the ability to operate at all

attitudes, and reducing the spin speed and speed ranges. Reducing accuracy

does not significantly simplify the system. If the requirements are reduced,

some of the sensors covered in the survey may be applicable with fewer

modifications. Unless the cruise mode and all other orientations are

restricted so that the sensor always points away from the sun, all sensors

would require a completely new baffle and optical system at a minimum.
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